

The projects sponsoring this workshop received support from the European Union's Horizon 2020 research and innovation under grants agreement reported below

Nº	Acronym	Project Title	Website	Grant agreement
1	MEMBER	Advanced MEMBranes and membrane assisted procEsses for pre- and post- combustion CO2 captuRe	https://member-co2.com/	760944
2	CARMOF	TAILOR-MADE 3D PRINTED STRUCTURES BASED ON CNTS AND MOFS MATERIALS FOR EFFICIENT CO2 CAPTURE	https://carmof.eu/	760884
3	BIOCOMEM	Bio-based copolymers for membrane end products for gas separations	https://www.biocomem.eu/	887075
4	C2FUEL	Carbon Captured Fuel and Energy Carriers for an Intensified Steel Off-Gases based Electricity Generation in a Smarter Industrial Ecosystem	https://c2fuel-project.eu/	838014
5	COZMOS	Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS	https://www.spire2030.eu/c ozmos	837733
6	eCOCO2	Direct electrocatalytic conversion of CO2 into chemical energy carriers in a co-ionic membrane reactor	https://ecocoo.eu/	838077
7	CO2Fokus	CO2 utilisation focused on market relevant dimethyl ether production, via 3D printed reactor- and solid oxide cell-based technologies	https://www.co2fokus.eu/	838061
8	C4U	Advanced Carbon Capture for steel industries integrated in CCUS Clusters	https://c4u-project.eu/	884418
9	REALISE	Demonstrating a Refinery-Adapted Cluster- Integrated Strategy to Enable Full-Chain CCUS Implementation	https://realiseccus.eu/	884266
10	CONVERGE	CarbON Valorisation in Energy-efficient Green fuels	<u>https://www.converge-</u> h2020.eu/	818135
11	KEROGREEN	Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO2, syngas formation and Fischer- Tropsch synthesi	http://www.kerogreen.eu/	763909

Carbon-intensive industries are mandatory to supply processed materials and products to cover EU citizen's needs. In a vision of a decarbonized Europe, these industries are always seen as negative components due to their massive CO₂ emissions but also since only 14% of the energy used to run these factories is coming from renewable sources.

What if we were able to generate additional value, capturing CO₂ flue gases & convert it into a fuel and energy carrier that could be used locally?

There is a large consensus at European level that CO_2 capture, either from energy intensive industries or even from air, is a necessity to be able to reduce the human effect on the observed climate changes.

At the same time, CO_2 is increasingly seen as a potential raw material for the C1 chemistry or to be used as energy carrier.

Several projects are running in parallel at national and international levels. This workshop gathered the last scientific results of the different running projects and made them available for scientists and students and industrial researchers in an informal atmosphere.

The scientific goal was to create a forum for open discussion on the latest developments on technologies for CO_2 capture and conversion. We think that the workshop should be open to all, without registration fees, and as such several projects decided to try to (partially) cover the costs of the workshop. In this way, also young students could participate freely and have the possibility to discuss the topic and the last developments in the field.

Chairman

Prof. Fausto Gallucci - Eindhoven University of Technology

Local organizing Committee

Fausto Gallucci Fernanda Neira D'Angelo Aitor Cruellas Camilla Brencio Brandon Leal Sirui Li Arash Rahimali Berenger Wegman Saskia Walravens

Program

Day 1

	Opening & Plenary sessior	ns (chairperson Fausto Gallucci)		
9:00-9:30	All coordinators - Introduction to projects			
9:30-10:00		IorMittal) - The zero Emission Plant		
10:00-10:30	Dr. Walter Eever	s (CO2 Value Europe)		
10:30-11:15	Coffee break and posters			
	Session 1A (chairperson Jose Luis Viviente)	Session 1B (chairperson Camel Makhloufi)		
11:15-11:35	Dr. O. David - A review of the membrane development steps from material to final product	Dr. M. Noponen and Dr. X. Sun - High temperature electrolysis and co-electrolysis		
11:35-11:55	Dr. V. Spallina - System simulation for integration of CO ₂ capture technologies into steelworks and CCUS clusters	Prof. J Serra - Direct electrocatalytic conversion of CO ₂ into chemical energy carriers in a co-ionic membrane reactor		
11:55-12:15	Dr. M. Saric - Methanol membrane reactor: modelling and experimental results	Dr. V. Middelkoop - CO2Fokus at a glance: CO ₂ utilisation focused on DME production, via 3D printed reactor and solid oxide cell based technologies		
12:15-12:35	Dr. Adam Deacon - Realising the potential of MOFs through efficient scale-up	Dr. M. Tsampas - The KEROGREEN CO ₂ plasma route to CO and alternative fuels		
12:35-12:55	Dr. M. Etxeberria-Benavides - PBI based mixed matrix hollow fiber membranes for pre-combustion CO ₂ capture	Dr. G. Bonura - 3D-printing in catalysis: Development of efficient hybrid systems for the direct hydrogenation of CO ₂ to DME		
12:55-14:00	Lun	nch break		
	Plenary session (cha	airperson Fausto Gallucci)		
14:00-15:00	Dr. Angels Orduna (Spire 2030)			
	Session 2A (chairperson Giampaolo Session 2B (chairperson V Manzolini) Middelkoop)			
15:00-15:20	Dr. G. Garcia - LCA and TEA of the COZMOS technology	Dr. M. Sleczkowski and Dr. Pablo Ortiz - Turning gas separation membranes green with biobased block copolymers		
15:20-15:40	Dr. A. Mattos or Dr. A. Mitchell - How can public policy and business model innovation be developed to address challenges of CCUS and realise the opportunity?	Dr. A. Benedito - CARMOF Project: a CO ₂ capture demonstrator based on membrane and solid sorbents hybrid process		
15:40-16:00	Dr. L. Engelmann - Perception of CO ₂ - based fuels and their production in international comparison	Dr. R.H. Heyn - Introduction to the COZMOS project		
16:00-16:20	Dr. N. Dunphy - Social studies in REALISE project	Dr. L. Petrescu - Converge technology for efficiency methanol production with negative CO ₂ emissions: energy and environmental analysis		
16:20-17:05	Coffee break and posters			

Day 2

	Opening & Plenary Sessions (chairperson Fernanda Neira D'Angelo)		
9:30-10:00	All coordinators - Introduction to projects		
10:00-11:00	Dr. K. Bakke - Northern Lights – concept, plans and future		
11:00-11:45	Coffee break and posters		
	Session 3A (chairperson José Serra) Session 3B (chairperson Oana David)		
11:45-12:05	Dr. A. De Paula Oliveira - SER and SEWGS for CO ₂ capture: experimental results	Msc. A. Sliousaregko - Industrial membrane requirements for CO ₂ removal from different gas mixtures - Current practices and developments	
12:05-12:25	MSc. S. Poto - Membrane reactors for DME production	Dr. I. Kim - Technologies demonstration in REALISE	
12:25-12:45	Dr. U. Olsbye - Catalyst development within the COZMOS project	Dr. N. Kanellopoulos - Hybrid VTSA pilot plant and design of industrial demo plant for CO ₂ capture	
12:45-13:05	Dr. S. Krishnamurthy - CO ₂ capture using 3D printed PEI adsorbents supported by carbon nanostructures	Mr. Paul Cobden and Prof. C. Abanades - Pilot preparation for demonstration in the C4U project	
13:05-13:25	Dr. S. Perez - Process intensification in the conversion of CO ₂ with a milli- structured reactor	Mr. T. Swinkels - Decentralized FA based power generators	
13:25-13:45	Dr. F. de Sales Vidal Vazquez - The KEROGREEN syngas route to alternative fuels and chemicals	Dr. L. Roses - Design and development of a membranebased post-combustion CO ₂ capture system	
13:45-14:30	Lunch break		
14:30-15:30	Round table and questions - closure (chairpersons Fausto Gallucci and Fernanda Neira)		

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/e - Eindhoven - 16-17 February 2021

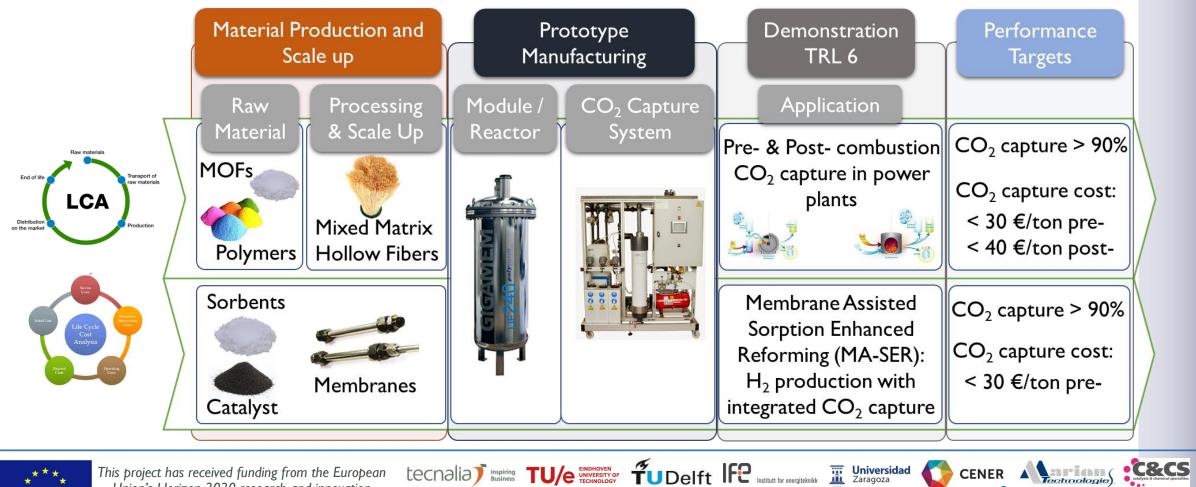
Opening & Plenary sessions (chairperson Fausto Gallucci)

All coordinators - Introduction to projects

Dr. E. De Coninck (CTO ArcelorMittal) - The zero Emission Plant

Introduction to the Projects

International Workshop on CO₂ Capture and Utilization, 16-17 February 2021, TU/E, Eindhoven, The Netherlands


Outline

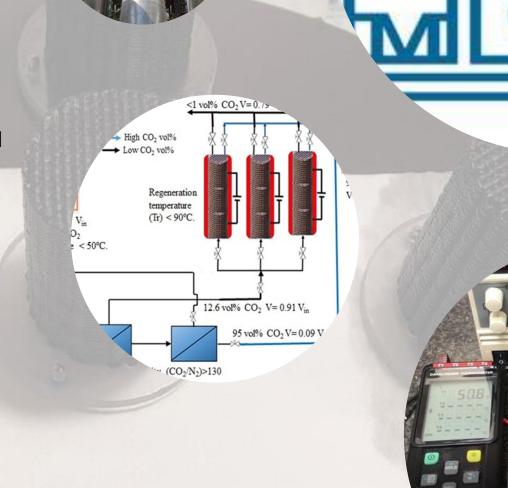
- I. MEMBER
- 2. CARMOF
- 3. BIOCOMEM
- 4. C2FUEL
- 5. COZMOS
- 6. eCOCO2
- 7. CO2Fokus
- 8. C4U
- 9. REALISE
- 10. CONVERGE
- II. KEROGREEN

N٩	Торіс	Acronym	Project Tytle	website	Coordinator or speaker
1	NMBP-20-2017: High-performance materials for optimizing carbon dioxide capture	MEMBER	Advanced MEMBranes and membrane assisted procEsses for pre- and post- combustion CO2 captuRe	https://member-co2.com/	José Luis Viviente
2	NMBP-20-2017: High-performance materials for optimizing carbon dioxide capture	CARMOF	TAILOR-MADE 3D PRINTED STRUCTURES BASED ON CNTS AND MOFS MATERIALS FOR EFFICIENT CO2 CAPTURE	https://carmof.eu/	Adolfo Benedito
3	BBI-2019-SO3-R10 - Develop bio-based high- performance materials for various and demanding applications	BIOCOMEM	Bio-based copolymers for membrane end products for gas separations	https://www.biocomem.eu/	Oana David
4	CE-SC3-NZE-2-2018: Conversion of captured CO2	C2FUEL	Carbon Captured Fuel and Energy Carriers for an Intensified Steel Off-Gases based Electricity Generation in a Smarter Industrial Ecosystem	https://c2fuel-project.eu/	Camel Makhloufi
5	CE-SC3-NZE-2-2018: Conversion of captured CO2	COZMOS	Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS	https://www.spire2030.eu/cozmos	Richard H. Heyn
6	CE-SC3-NZE-2-2018: Conversion of captured CO2	eCOCO2	Direct electrocatalytic conversion of CO2 into chemical energy carriers in a co-ionic membrane reactor	https://ecocoo.eu/	José M. Serra
7	CE-SC3-NZE-2-2018: Conversion of captured CO2	CO2Fokus	CO2 utilisation focused on market relevant dimethyl ether production, via 3D printed reactor- and solid oxide cell-based technologies	https://www.co2fokus.eu/	Vesna Middelkoop
8	LC-SC3-NZE-5-2019-2020 - Low carbon industrial production using CCUS	C4U	Advanced Carbon Capture for steel industries integrated in CCUS Clusters	https://c4u-project.eu/	Haroun Mahgerefteh
9	LC-SC3-NZE-5-2019-2020 - Low carbon industrial production using CCUS	REALISE	Demonstrating a Refinery-Adapted Cluster-Integrated Strategy to Enable Full-Chain CCUS Implementation	https://realiseccus.eu/	Inna Kim
10	LC-SC3-RES-21-2018 - Development of next generation biofuels and alternative renewable fuel technologies for road transport	CONVERGE	CarbON Valorisation in Energy-efficient Green fuels	https://www.converge-h2020.eu/	Giampaolo Manzolini
11	LCE-06-2017 - New knowledge and technologies	KEROGREE N	Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO2, syngas formation and Fischer- Tropsch synthesi	<u>http://www.kerogreen.eu/</u>	Michael Tsampas

Advanced MEMBranes and membrane assisted procEsses for pre- and post- combustion CO₂ captuRe

MEMBER project aims to reduce the cost of the Carbon Dioxide capture technologies by scaling-up and manufacturing advance materials (membranes, catalysts and sorbents) to develop membrane-based technologies that outperform current technology for pre- and post-combustion CO_2 capture in power plants as well as H₂ generation with integrated CO_2 capture.

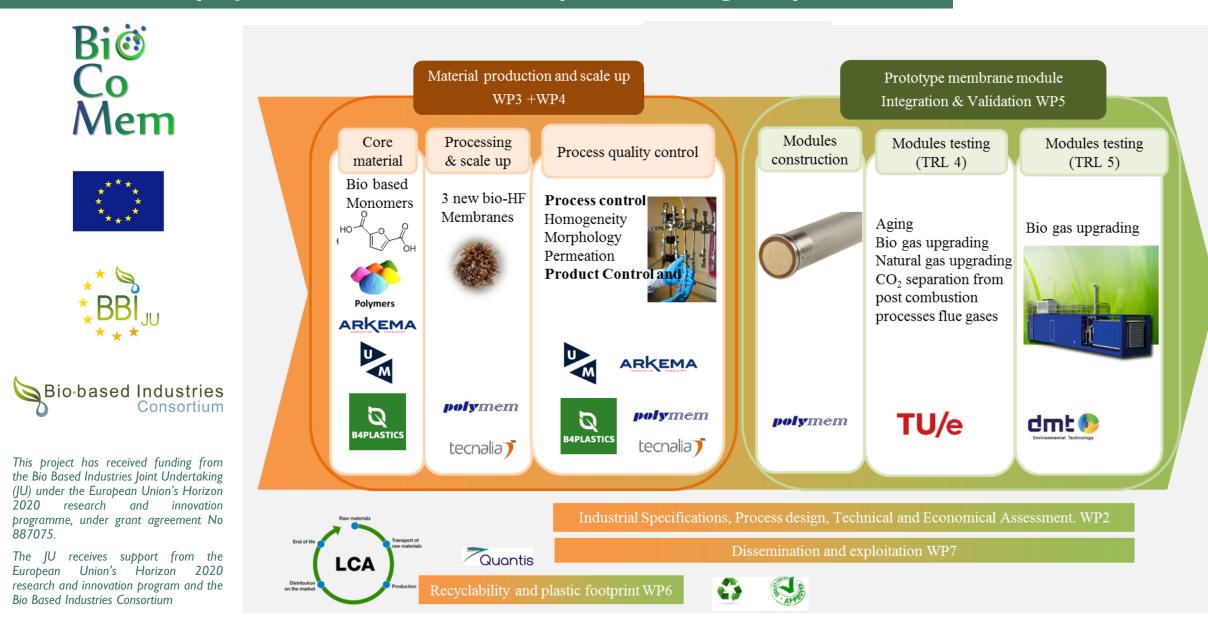
DOLY THE AND A SUPER EC Recycling ZEG Power W Quantis The Andrew And A Super And A Super A Sup


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760944.

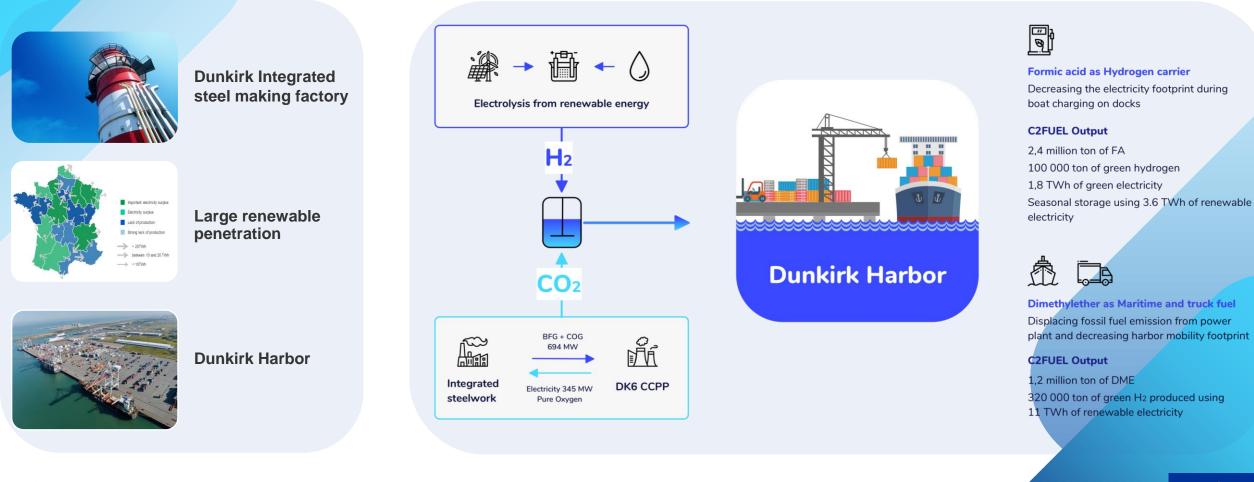
galp (6)

CARMOF Project

TAILOR-MADE 3D PRINTED STRUCTURES BASED ON CNT AND MOF MATERIALS FOR EFFICIENT CO2 CAPTURE


CARMOF is developing a hybrid CO₂ process combining **VTSA modules** based on 3D printed monoliths with thermoelectric regeneration and "in cascade" **membranes system**. The goal is to achieve high purity CO₂ streams from synergetic effects from both technologies

CA

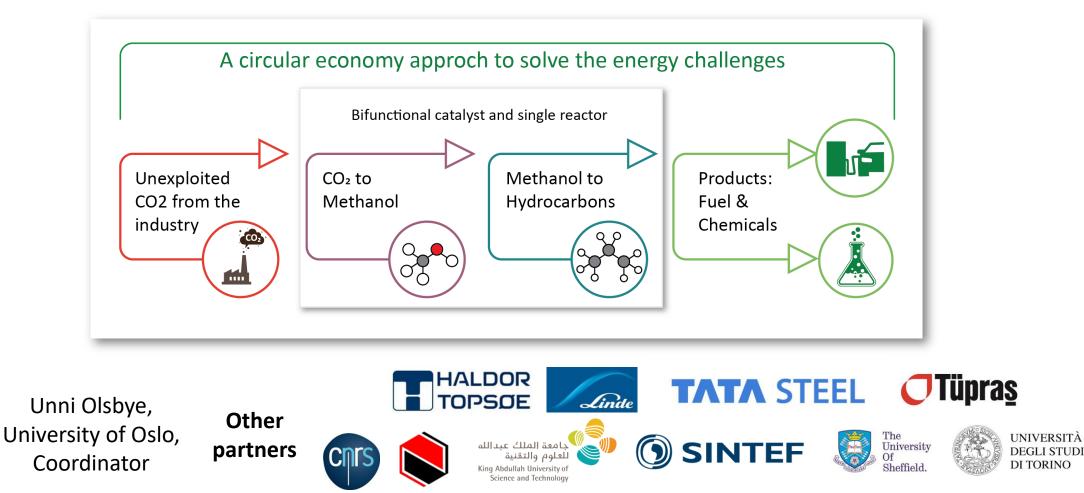

European Commission

Bio-based copolymers for membrane end products for gas separations

C2FUEL Approach: Aligning local supply and demand Dr Camel Makhloufi – ENGIE Lab CRIGEN - France

CNIS

TU/e Technische Universiteit Eindhoven University of Technology


tecnalia Inspiring

"This project has received funding from VOLKSWAGEN the European Union's Horizon 2020 research and innovation programme under grant agreement No 838014".

Efficient CO₂ conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS

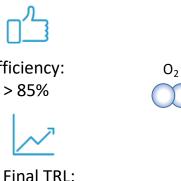
COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS.

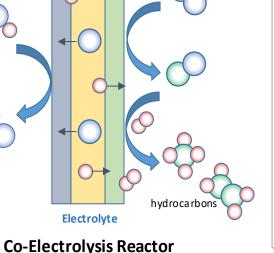
This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

Direct electrocatalytic conversion of CO₂ into chemical energy carriers in a co-ionic membrane reactor

PARTNERS

AIM: Set-up a technology for direct synthesis of carbon-neutral jet fuels from CO₂ using renewable energy and electrochemical catalytic membrane reactors. Bench-testing targets a 500 W multi-tubular system.


 CO_2


- Single-step electrolysis and one-pot ٠ catalytic conversion.
- **Operating conditions:** ٠ T = 350-450 °C and > 25 bar.

Product: Jet fuel

Efficiency: > 85%

Full integration: compact sized reactor 5

Follow us!

Linked in

H2020-LC-SC3-2018-NZE-CC | Duration: May 2019 – May 2023 | EC funding: 3.9 M€

H₂O

This project has received European Union's Horizon 2020 research and innovation funding under grant agreement Nº 838077.

CO₂ utilisation focused on market relevant dimethyl ether production, via 3D printed reactor and solid oxide cell based technologies Vesna Middelkoop, VITO

1500 N L/h CO₂/H₂ feed, > 30 % CO₂ conversion, 3.5 kW SOE 50 % conversion demo in industrial environment in 2022

the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

C⁴U

Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters

 C⁴U addresses the essential elements for the optimal integration of CO₂ capture in the iron and steel industry as part of the CCUS chain. This spans demonstration of two highly efficient solid based CO₂ capture technologies for optimal integration into an iron and steel plant and detailed consideration of the safety, environmental, societal, policy and business aspects for successful incorporation into the North Sea Port CCUS industrial cluster.

https://c4u-project.eu/

Testing and demonstration of capture technologies at TRL7

WP1: DISPLACE process for reheating ovens

- L. Design, construction and commissioning
- 2. TRL7 N_2 - H_2 benchmark demonstration
- TRL7 DISPLACE technology demonstration
- . Detailed DISPLACE reactor modelling
- 5. CO₂ purity analysis for pipeline and
- storage

WP2: CASOH process for blast furnace gas

- . Reactor design modelling
- 2. Pilot commissioning
- 3. Screening operating conditions at TRL7
- 4. Long term experimental testing at TRL7
- 5. CO₂ purity analysis for pipeline and storage

Integrating CO₂ capture in industrial installations and clusters

- WP3: Integration of CO₂ capture technologies in steel plant
- 1. Detailed CO₂ capture process modelling
- 2. Techno-economic assessment and optimization of steel mill with CO₂ capture
- 3. Industrial design and costing of capture systems

WP4: Integration of CO₂ capture in industrial clusters

- 1. Transport and storage safety impact assessment
- 2. CCUS cluster whole system modelling and operational logistics
- 3. Life Cycle Assessment of the North Sea Port CCS cluster

Societal readiness, public policy and the business case

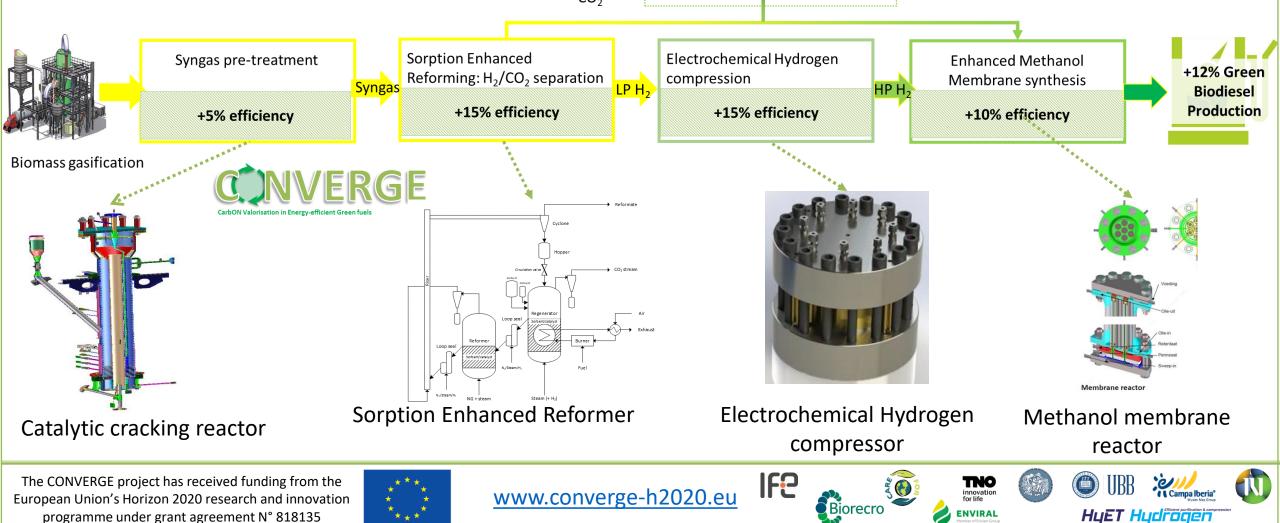
WP5: Societal readiness and public policy

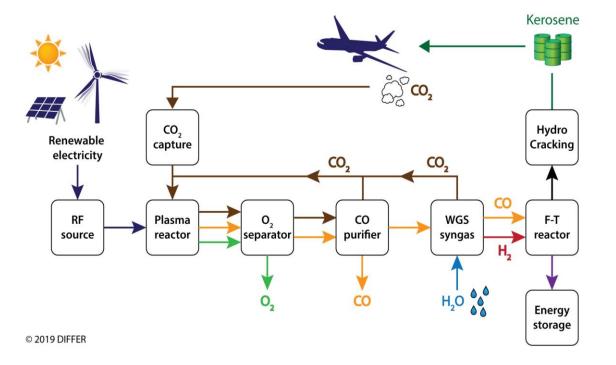
- 1. System dynamics of socio-economic and political aspects
- 2. Assessment of concerns and needs of societal stakeholders
- 3. Policy instruments assessment for CCUS in industrial clusters

WP6: Long term business models

- 1. Market and stakeholder analysis
- 2. Scenario development, investment and risk analysis
- 3. Customer value proposition development
- 4. Business model descriptions

≜UCL The POLITECNICO University INE-RIS **Project Coordinator** CARMEUSE Of **Arcelor**Mittal **MILANO 1863** Sheffield CanmetENERGY Haroun Mahgerefteh maîtriser le risque ur un développement durch **University College London** SWERIM h.mahgerefteh@ucl.ac.uk This project has received MANCHESTER Climate Strategies elementenergy KISUMA European funding from the European **Project Period** PS Policy The University of Manchester Union's Horizon 2020 Radboud University April 2020 - March 2024 research and innovation BERKELEY LAB **Overall budaet** JM wood programme under grant o innovation € 13.845.496 agreement No. 884418.


Demonstrating a refinery-adapted cluster-integrated strategy to enable full-chain CCUS implementation – REALISE (May 2020 – April 2023)


The CONVERGE project will validate an innovative process which will increase the biodiesel production by 12% per secondary biomass unit used and reduce the CAPEX by 10%. The CONVERGE technologies will be validated for more than 2000 cumulated hours taking these from the discovery stage (TRL3) to development stage (TRL5).

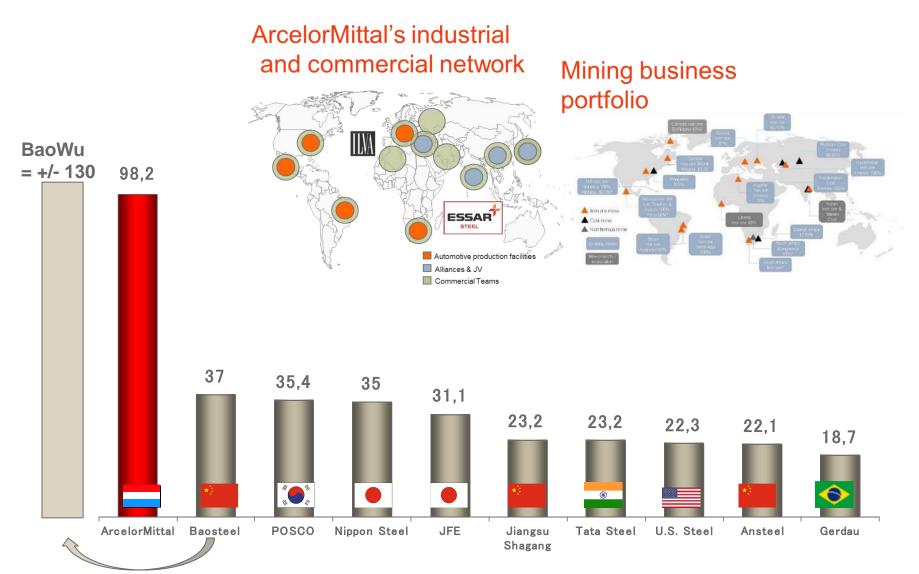
In addition, the CONVERGE process will valorise the remaining biogenic and purified CO₂ for production of negative emissions via BECCS.

The KEROGREEN CO₂ plasma route to CO and alternative fuels

M.N. Tsampas, DIFFER, The Netherlands

Kerogreen aim: Demonstation of the full chain process from renewable, electricity, CO_2 (captured) and H_2O to kerosene.

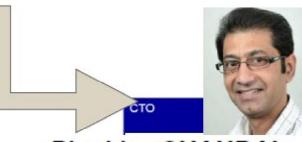
- Research and optimization of individual process steps TRL (1-3) \rightarrow 4
- Integration phase at Karlsruhe Institute of Technology \rightarrow 3 L per day
- Duration 2018-2022



ArcelorMittal : possible pathways towards THE LOW EMISSION PLAN(T)

July 2020

Largest steel producers (in mt crude steel)



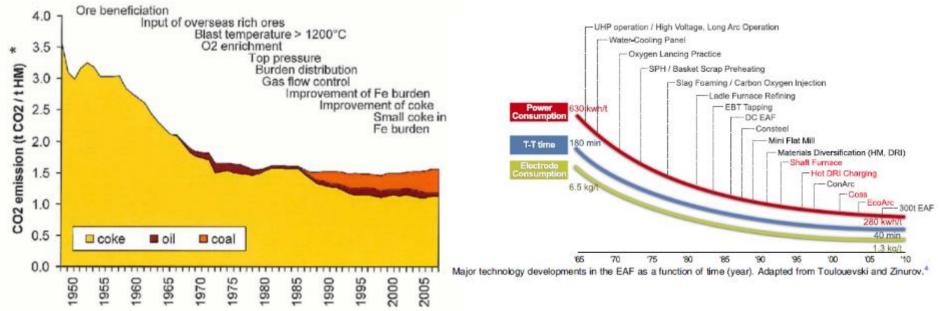
* Source: Worldsteel

Group Management

Pinakin CHAUBAL

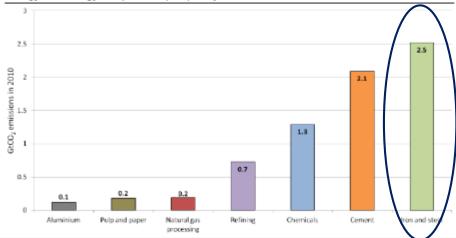
Lakshmi N. MITTAL President of the Board

LIS team = low impact steel making


Agenda :

- 1. European history of steelmaking
- 2. Others are still at the very beginning of this history
- 3. What can Europe afford ?
- 4. Low emission principles
 - a) Gas separation
 - b) CO re-use by chemical industry
 - c) CO_2 -H₂-chemistry : new technologies
 - d) CO_2 sale
 - e) CO₂ storage
- 5. Some political issues

The challenge of the steel industry = C-footprint reduction


Conventional steel making = blast furnaces (BF) Electrical steel making = electric arc furnaces (EAF)

1,8 billion tons of steel in 2018

30% of industrial CO_2 -emissions. 6,7% of anthropogenic CO_2 -emissions

They are amongst the highest of industries....

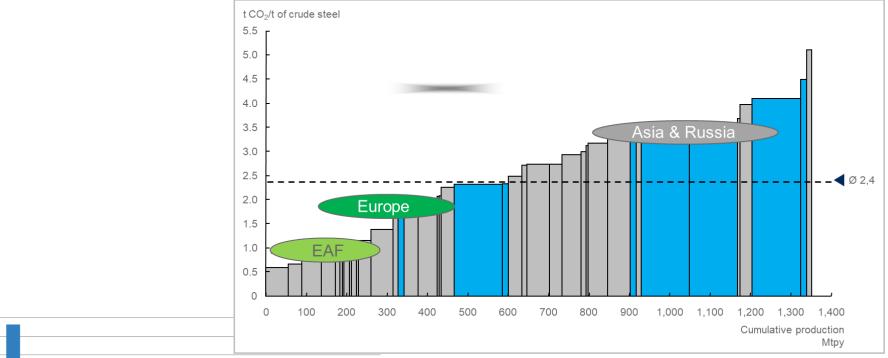
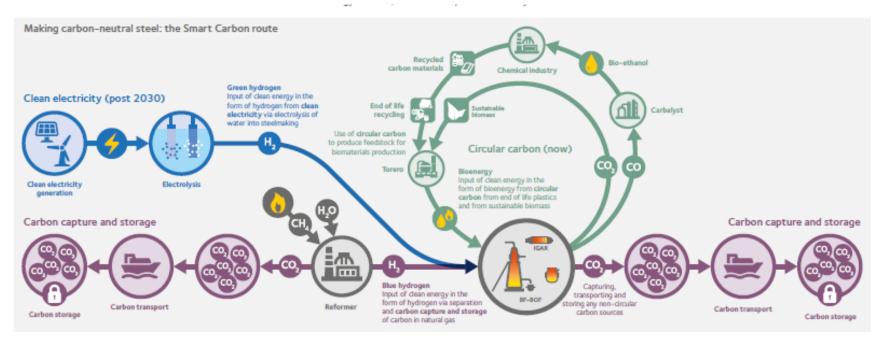



Figure 1. Global emissions from the seven most CO₂-intense industrial sectors in the IEA Energy Technology Perspectives (ETP) analysis

C-footprint reduction : the main emittors are not located in Europe !!!

China/India Other

250000

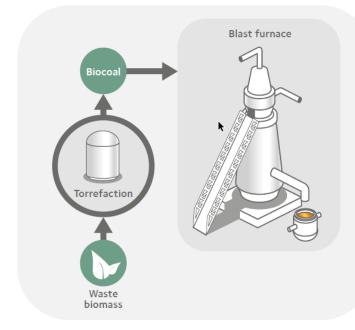

200000

AM decarbonation plan : -30% by 2030, carbon neutrality by 2050

Several measures to be developed :

- Energy efficiency and recovery
- Maximum use of affordable renewables (scrap melting) and C-free hydrogen (DRI)
- Use of biomass
- Use of circular carbon products (e.g. waste plastics)
- Re-use of carbon emissions (CCU)
- Storage of carbon emissions (CCS)

Confidential


AM decarbonation plan : biogenic carbon : free of CO2 allowances, is available in small volumes, e.g. waste wood....

Circular Carbon – Upgrading waste wood into "Bio-Coal" and plastics into circular carbon

Torero – 30m€ demo project to convert 120.000 ton waste materials into "bio-coal" in ArcelorMittal Gent

15/09/2020

Confidential

Carbon can be re-used :

Scientific Advice Mechanism (SAM)

Novel carbon capture and utilisation technologies

Group of Chief Scientific Advisors

Scientific Opinion 4/2018

Scientific Opinion

Novel Carbon Capture and Utilisation Technologies

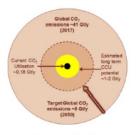


Figure 8 - Global CO2 emissions and the role of CCU. The figure shows also the target global emissions for 2050 as well as a simplified estimation for the CCU potential including all the possible uses (simplified and adapted^{21,22}).

CORESYM

CarbOn-monoxide RE-use through industrial SYMbiosis between steel and chemical industries

CORESYM

CarbOn-monoxide RE-use through industrial SYMbiosis between steel and chemical industries

CO-rich waste gases can be converted into products with a reduction of CO, emissions and other negative impacts.

Using waste gases as a feedstock, instead of for energy, can result in emission reductions from the production of energy and products of up to 21-34% compared to the baseline. In addition, the process of cleaning up waste gases for use as a feedstock also results in a concentrated stream of CO., which lends itself to Carbon Capture and Storage (CCS). While roughly a third of the direct emissions from waste gases can be mitigated through use as a feedstock, an additional third is made capture ready in the process. If CCS is implemented alongside waste gas recycling at a European scale, this could result in a reduction of up to 3% of European CO, emissions. In addition to reducing CO, emissions, when substituting waste gases for biobased feedstocks, water demands, wastewater production, and land use reduced, with positive implications for biodiversit

recent Risk Management position paper (DNV, 2011) states that using a variety of carbon utilisation technologies can potentially reduce annual CO2 emissions by 3.7 Gt. This equates to approximately 10% of current annual CO₂ emissions. A 10% replacement of building materials by CO2 captured in stable minerals would reduce CO2 emissions by 1.6 Gt CCS is the only option to decarbonise many industrial sectors. CCS is currently the only large-scale mitigation option available to cut the emissions intensity of production by over 50% in these sectors.

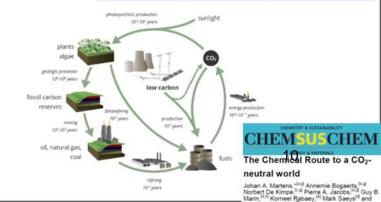
Take home message

Trading renewable energy by using CO₂ has a potential impact on mitigation of climate changes of over 7 Gtons CO₂ equivalent.

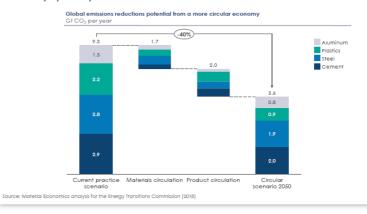
C

E

U

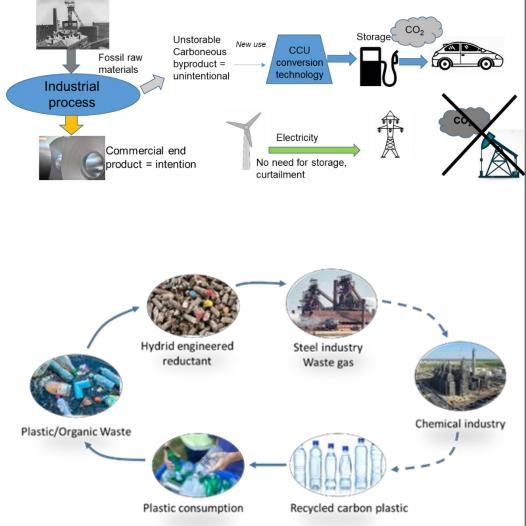

O

E


C

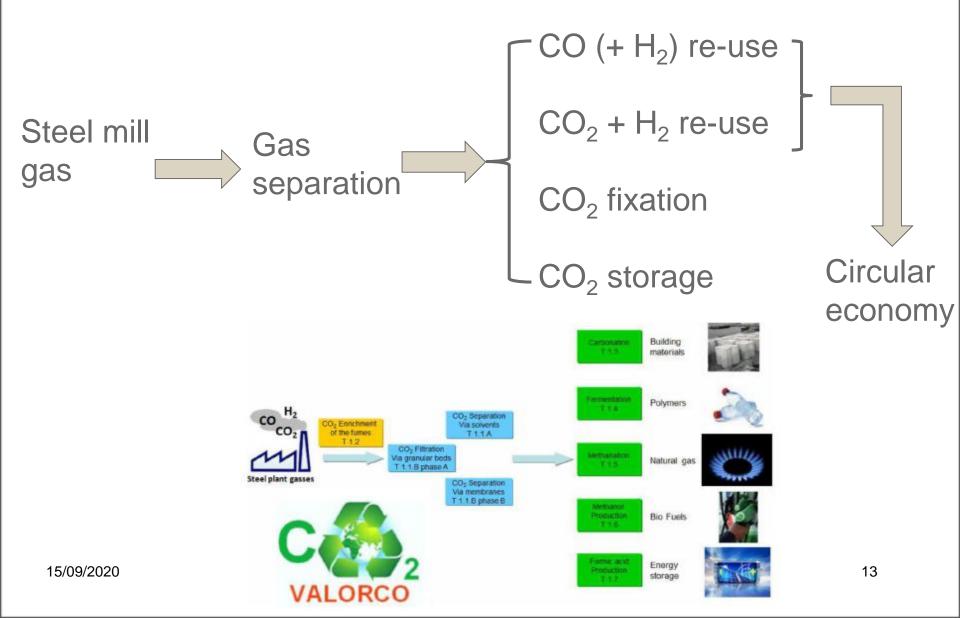
O ₂ uses	Existing (future) CO ₂ deman (Mt per h)
nhanced oil recovery	30-300 (<300)
rea	5-30 (<30)
ood and beverage	~ 17 (35)
/ater treatment	1-5 (<5)
ther	1-2(<6)
nhanced coal bed	
fethane recovery	(30-300)
O2 concrete curing (MC)	(30-300)
lgae cultivation	(>300)
fineralisation (MC)	(>300)
ed mud stabilisation (MC)	(5-30)
aking soda (MC)	<1
iquid fuels (methanol, formic acid)	(>600)

Hitchhiker's Guide to **Carbon Capture and** a Institute Utilisation


A more circular economy can cut emissions from the harder-to-abate sectors in industry by 40% by 2050

The Low Emission Plant principles

Technical principles :


- •Half of the steel mill gases is CO, which is burnt for power production. By not burning the CO a lot of CO_2 is avoided.
- This CO can be used for fuel and chemical production.
- •The lack of electricity on the grid, can be compensated by the production of RENEWABLE electricity. This is the major lever to reduce the CO_2 emissions •By separating the CO from the CO_2 , pure CO_2 is available for re-use or storage.

Only the re-use of C can ignite a CIRCULAR economy

The different steps of the Zero Emission Plan(t) concept of ArcelorMittal

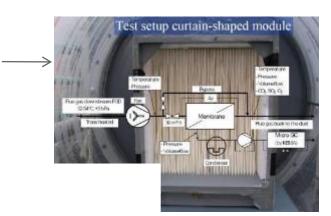
The steel mill of the future will still produce gasses Coke Oven gas ArcelorMittal Basic Oxygen Furnace gas Peak name Benzene Toluene convertormore Ethylbenzene p-Xylene aftapool m-Xylene alligheidsbekled H_2 and CH_4 o-Xylene DCPCD 1,2 m & 1,5 m alithekleding source Styrene Ethylacetylene Vinvlacetylene Hydrogensulfide CO source Corbonylsulfide Blast Furnace gas Methylmercaptan CO_2 , CO and Carbondisulfide Thiophene N_2 source Ethane Ethylene Propane BF Gas : 62 % 52% of the gas energy Propylene iso-Butane replaces natural gas in BOF Gas : 10% n-Butane the plant Acetylene CO Gas : 28% Power plant : 48% trans Butene-2 1-Butene iso-Butene cis Butene-2 + Neopentane* 15/09/2020 Con n-Pentane Butadiene 1-3

Methyl Acetylene

The steel mill of the future will provide the

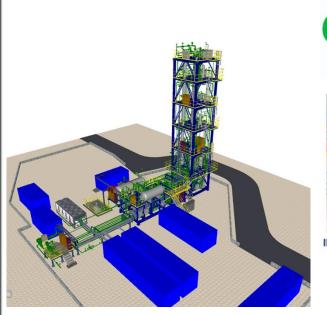
Steel mill gases CO/CO₂/H₂/N₂

DMEA Solvents



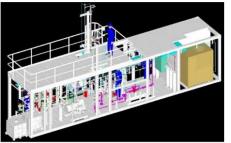
(V)PSA

AM Saldanha Works VPSA


MEMBRANE

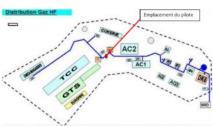
The steel mill of the future will provide the single gas components

3D : pilot project 2019 – 2023 (Dunkirk) pré-FEED done by IFPEN

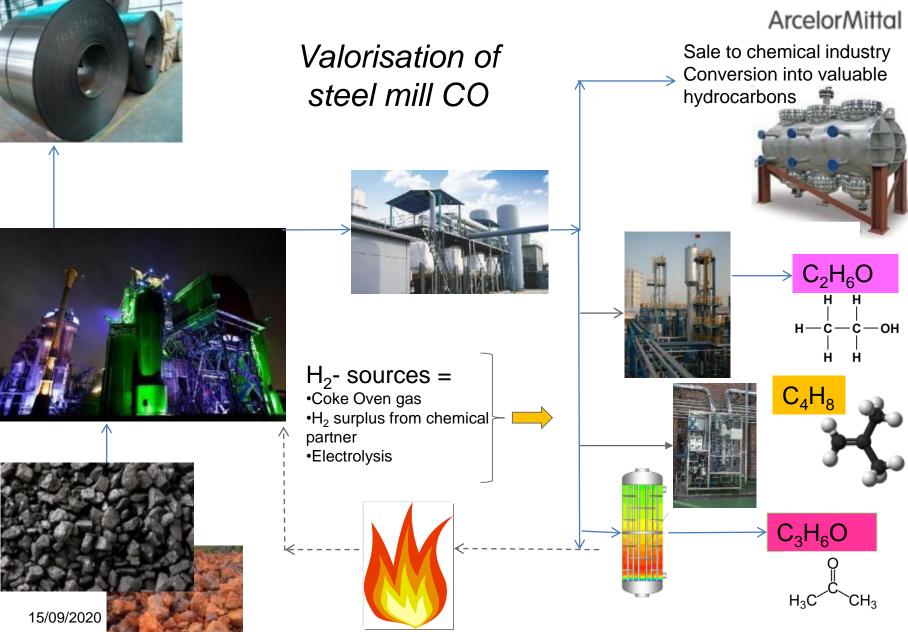


IFPEN mini-pilot in Solaize

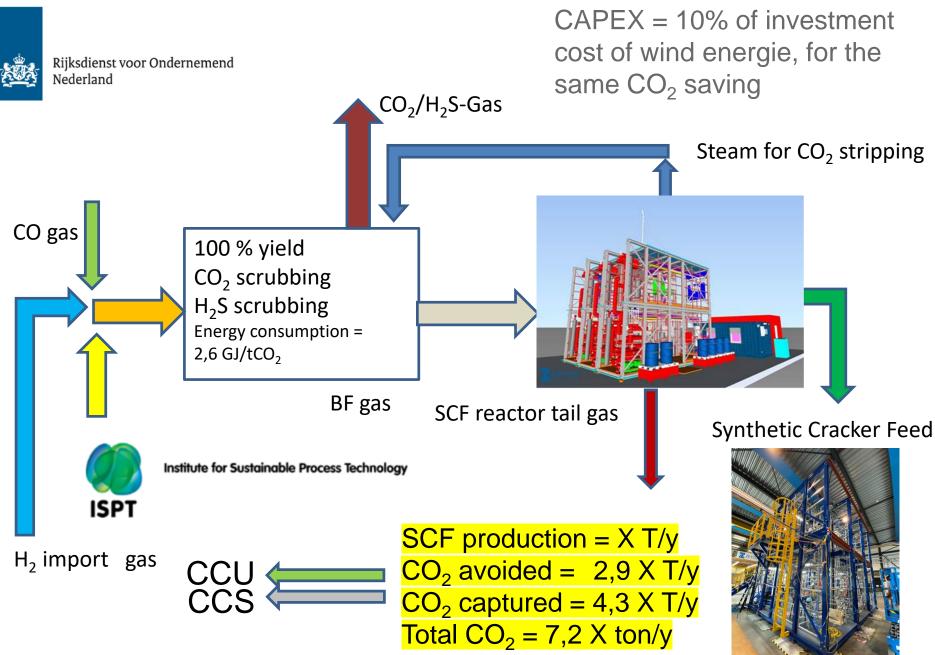
Carbon2Value : pilot project 2018 – 2020 INTERREG sponsored project

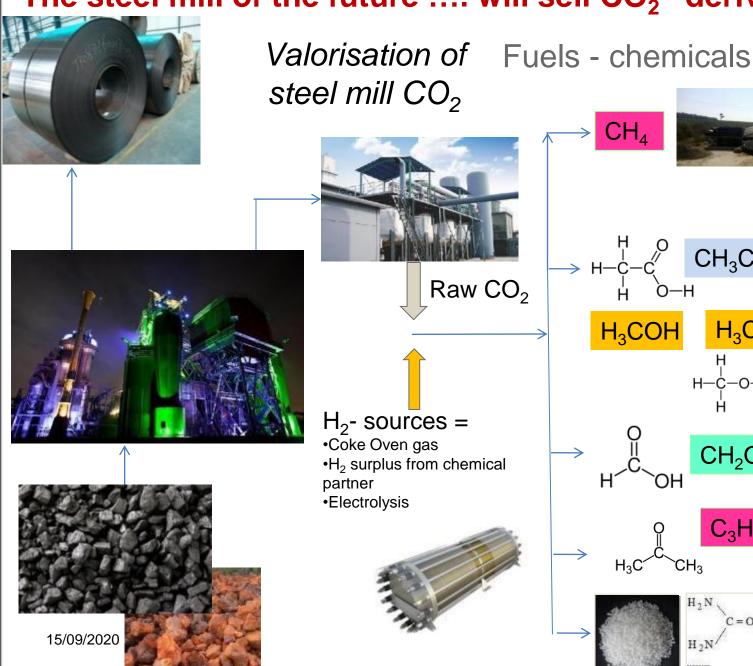

GENESIS : pilot project 2019 - 2021

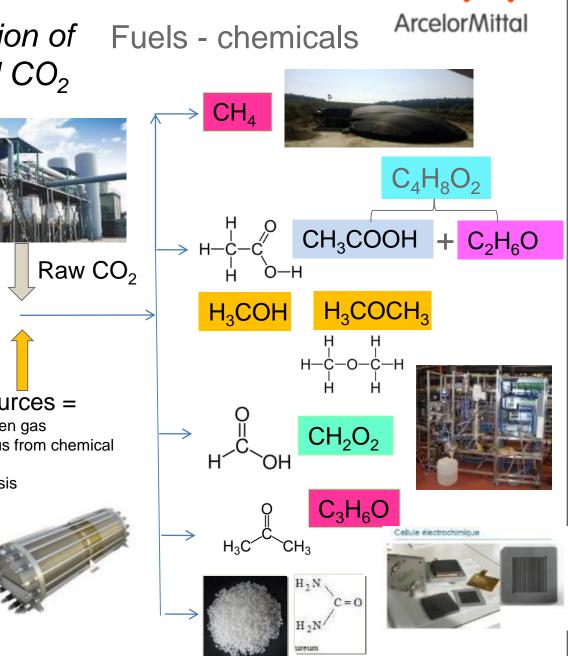
Membrane separation :


Capture of 0,5 t/h CO2 from 1.100 Nm³/h BFgas to study feasability

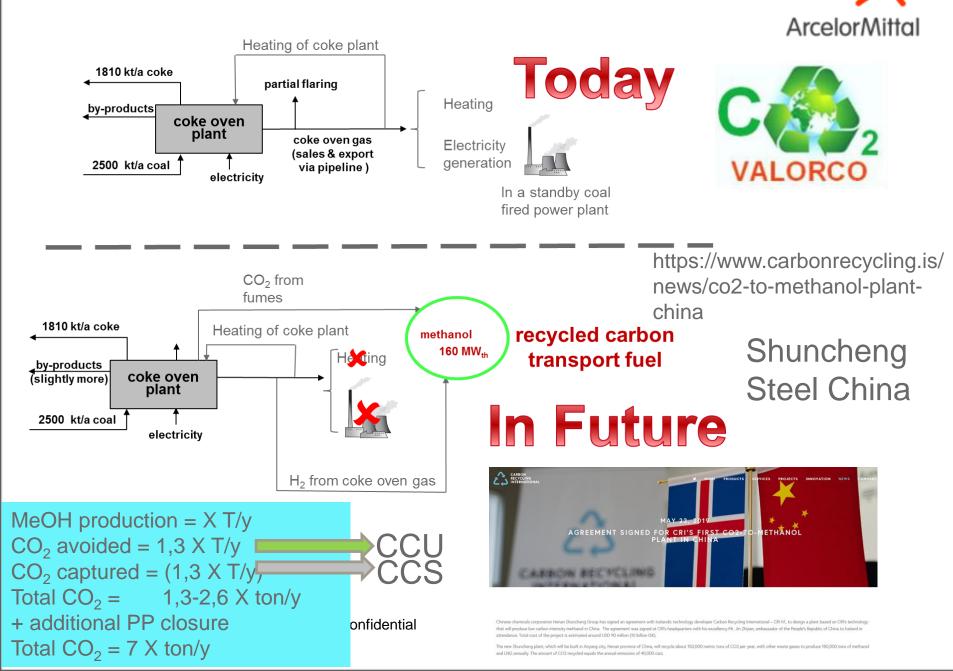
The steel mill of the future will sell CO



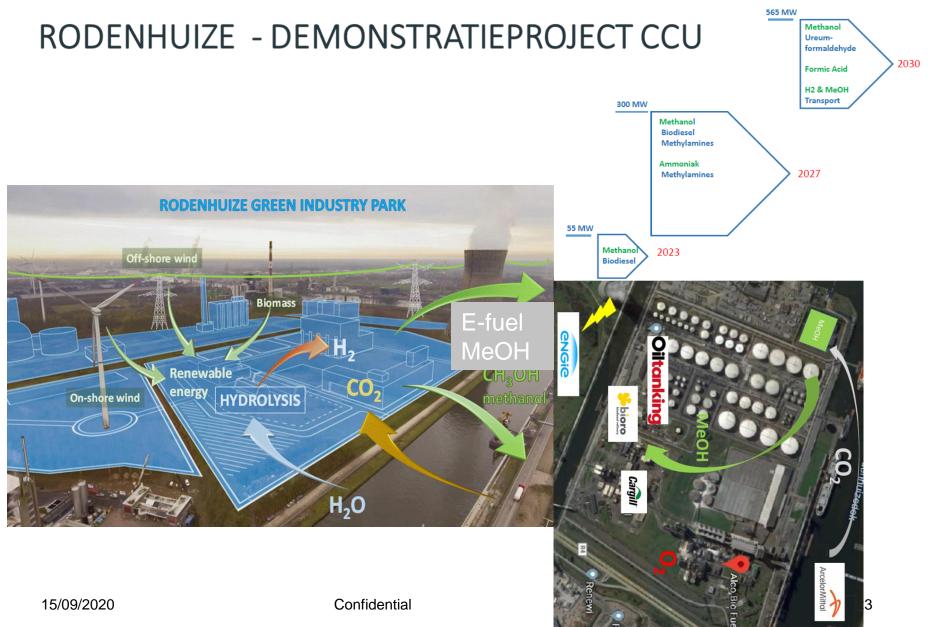

The steel mill of the future will sell CO

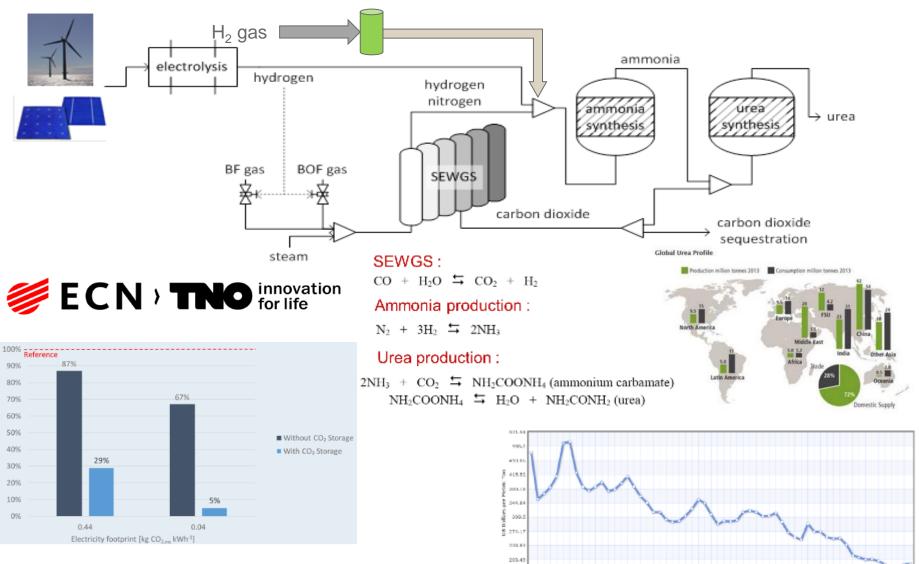


The steel mill of the future will sell CO



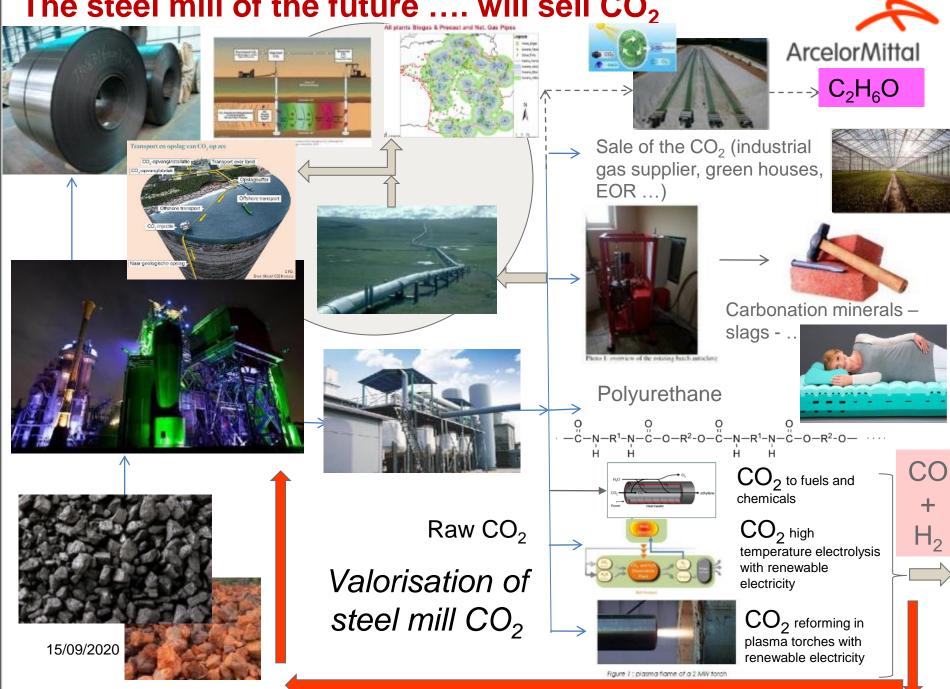
The steel mill of the future will sell CO₂ - derivates


The steel mill of the future will sell CO₂ - derivates


The steel mill of the future will sell CO₂ - derivates

ArcelorMittal

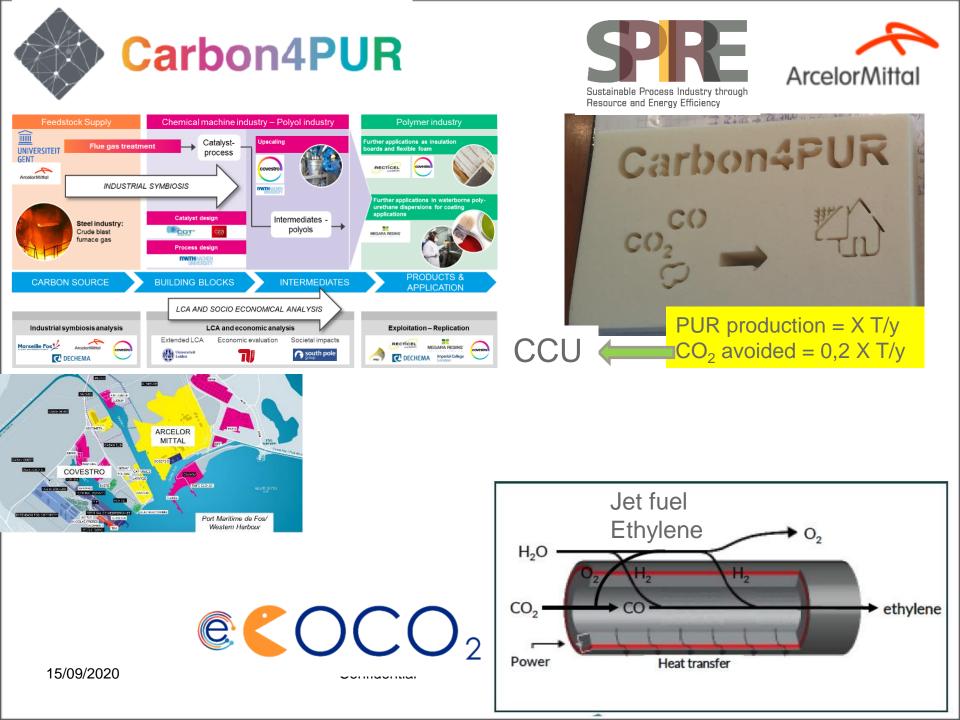
In integrated steel mills .. a combination of gases can be used

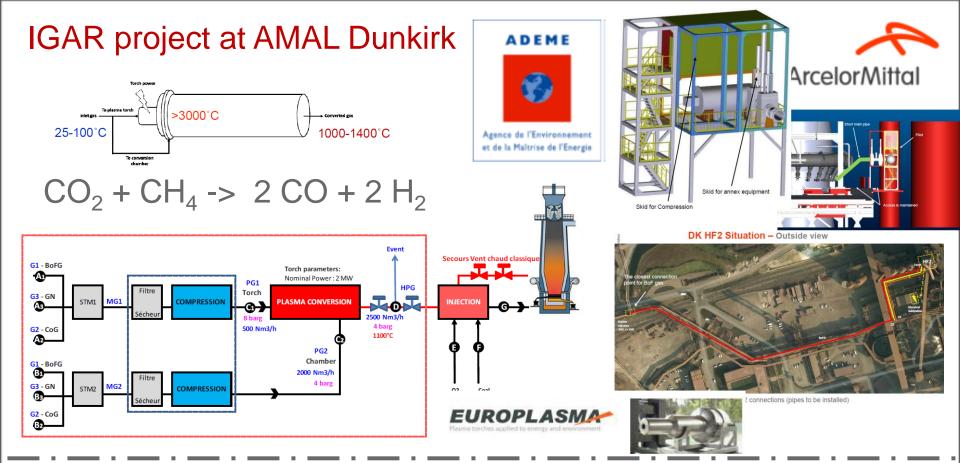

165.1

ArcelorMittal

15/09/2020

Confidential


The steel mill of the future will sell CO₂



The steel mill of the future will sell CO₂

Confidential

Vosco2

Algae project at AM Fos sur Mer

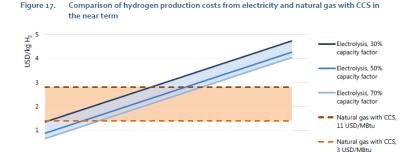
ADEME Agence de l'Environnement et de la Maltrise de l'Energie

Photo 3 : Bassin 10 m² de culture de micro algues marines avec fumées industrielles – site Arcelormittal.

H₂ based steelmaking project at AM Hamburg

Eisenschwamm

Metallisierung ~95 %


~700 °C

32

2019 Top 5 DRI Producing Nations

COUNTRY	PF	RODUCTION	(Million Tons)	A Ring
India		33.74		
Iran		28.52		
Russia		8.03		
Mexico		5.97		
Saudi Ara	abia	5.79		

50

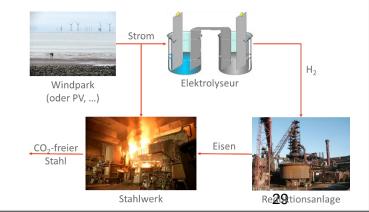
70

Notes: CAPEX: electrolyser USD poolKWw_SMME w CCS USD 1 360/KWH_5 full load hours of hydrogen from natural gas 8 300 h; efficiencies (LHV): electrolyser po%, gas with CCS 69%; capture rate for gas with CCS of 90%; discount rate: 8%. Source: IEA (2013a), The Future of Hydrogen: Seizing Today's Opportunities.

40

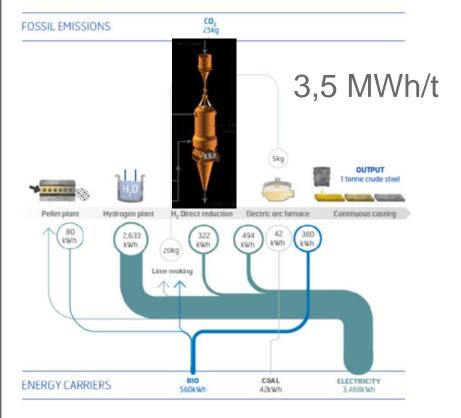
30

Electricity price (USD/MWh)


20

Depending on local gas prices, electricity at USD 10/MWh to USD 40/MWh and at full load hours of around 4 000 h is needed for water electrolysis to become cost competitive with natural gas with CCUS.

15/09/2020


Confidential

Vision für CO₂-freie Stahlerzeugung

AM is looking to the use of renewable electricity in different ways :

Use of green hydrogen in DRI making :

Direct electrolysis of Fe :

The steel mill of the future may have a legal problem ... and no market for its products

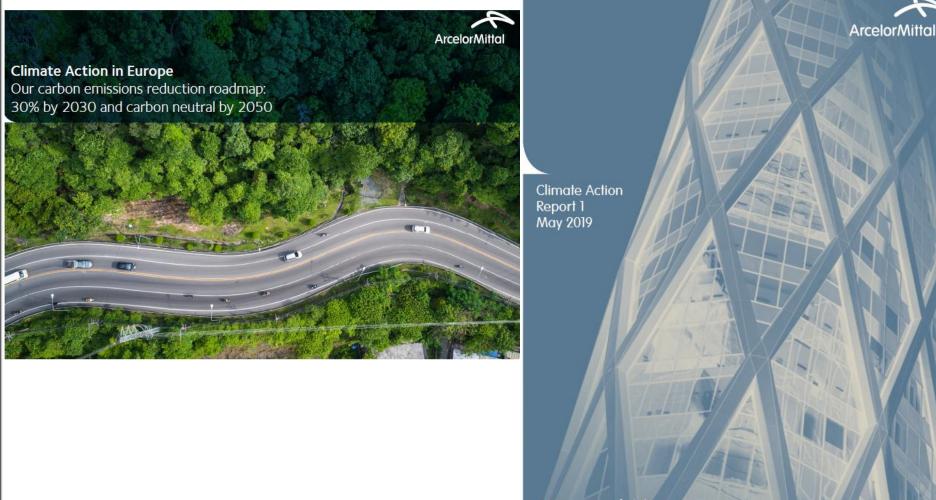
RED 2 : 2020 - 2030 Recycled Carbon Fuels

Many of these products will cost more than the fossil products

- The LCA-methodology has to be defined and accepted in a delegated act. The minimum threshold of GHG reduction is not yet fixed (renewable electricity is privileged for transport = EV)
- 2. Member states can decide themselves if they allow Recycled Carbon Fuels in the energy mix for transport The promotion of
- 3. The CO₂ taxes for re-used carbon may not be eliminated (ETS)

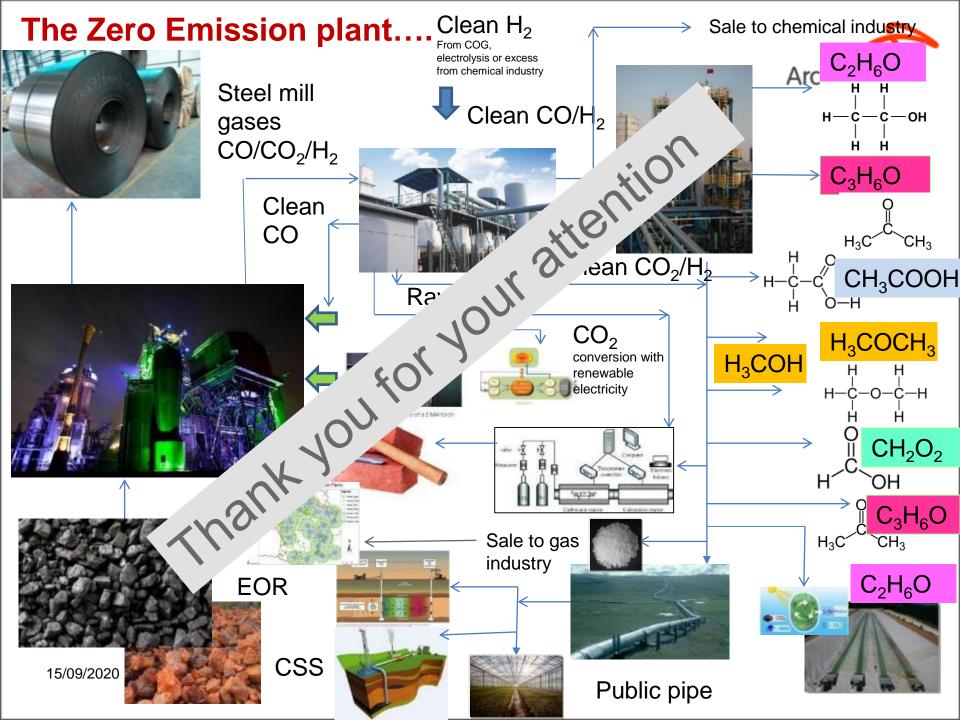
EUROPEAN COMMISSION

The promotion of recycled carbon fuels can also contribute towards the policy objectives of energy diversification and transport decarbonisation when they fulfil the appropriate minimum greenhouse gas savings threshold. It is therefore appropriate to include those fuels in the obligation on fuel suppliers, whilst giving Member States the option not to consider these fuels in the obligation if they do not wish to do so. Since those fuels are of non-renewable nature, they should not be counted towards the overall EU-target for energy from renewable sources.


greenhouse gas emission savings from renewable liquid and

gaseous transport fuels of non-biological origin and recycled carbon fuels, which shall ensure that no credit for avoided emissions be given for carbon dioxide whose capture already received an emission credit under other legal provisions.

15/09/2020


https://www.worldsteel.org/media-centre/industry-member-news/2019member-news/ArcelorMittal-publishes-first-Climate-Action-report.html

"Our ambition is to significantly reduce our carbon footprint."

Confidential

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/e - EINDHOVEN - 16-17 FEBRUARY 2021

Session 1A (chairperson Josè Luis Viviente)

11:15-11:35 Dr. O. David - A review of the membrane development steps from material to final product

11:35-11:55 Dr. V. Spallina - System simulation for integration of CO₂ capture technologies into steelworks and CCUS clusters

11:55-12:15 Dr. M. Saric - Methanol membrane reactor: modelling and experimental results

12:15-12:35 Dr. Adam Deacon - Realising the potential of MOFs through efficient scale-up

12:35-12:55 Dr. M. Etxeberria-Benavides - PBI based mixed matrix hollow fiber membranes for pre-combustion CO₂ capture

ORGANIZED BY

WE CAN DO SO MUCH TOGETHER

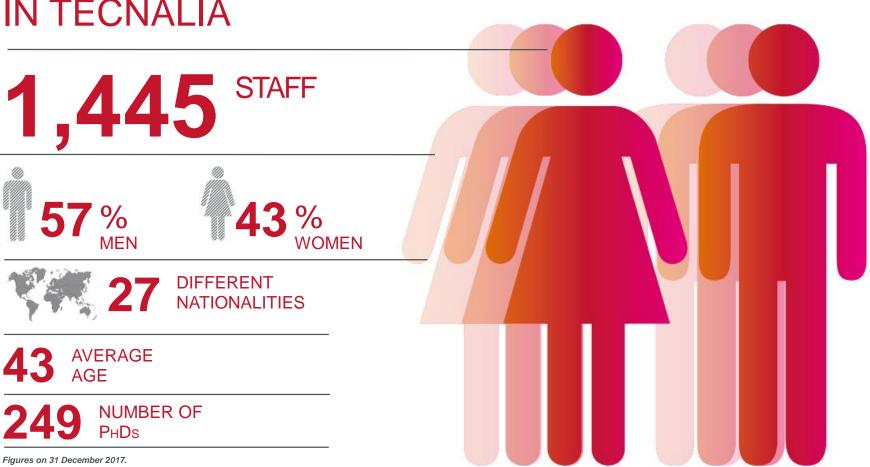
INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/e - EINDHOVEN - 16-17 FEBRUARY 2021

Membrane development steps: from material to final product

Dr Oana David

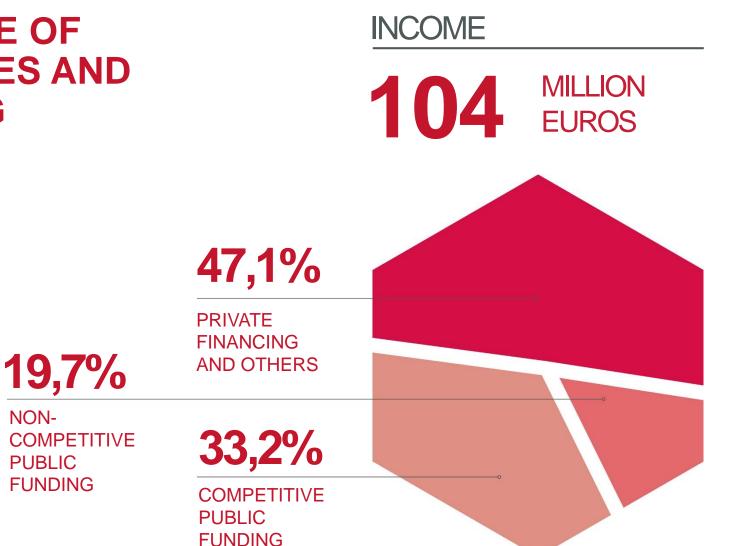
DSSINNOVA 2016

FUNDACION TECNALIA RESEARCH & INNOVATION


is a private non profit research centre.

Main figures in 2017

PEOPLE IN TECNALIA


Model

BALANCE OF ACTIVITIES AND FUNDING

NON-

PUBLIC **FUNDING**

FIGURES ON 31 DECEMBER 2017

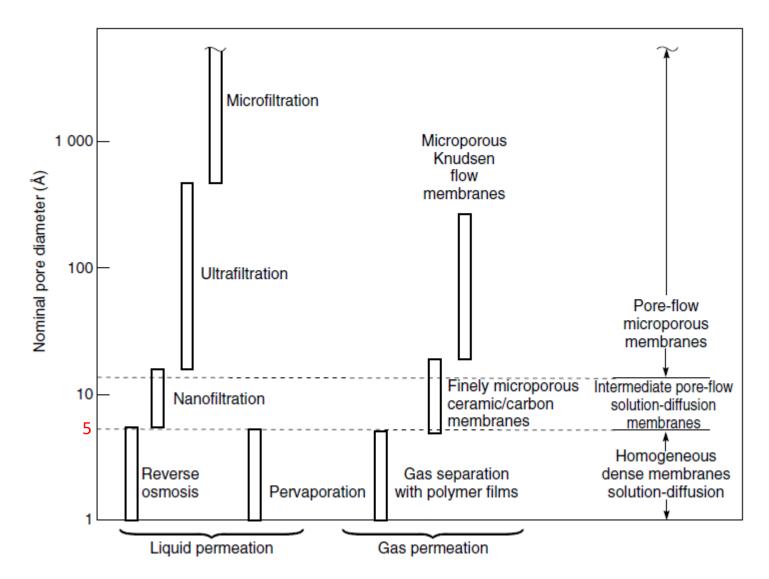
FUNDACION TECNALIA RESEARCH & INNOVATION is a private non profit research centre.

6 INTERCONNECTED BUSINESS DIVISIONS

+ EMERGING BUSINESSES

Membrane Technology and Process Intensification research group at TECNALIA

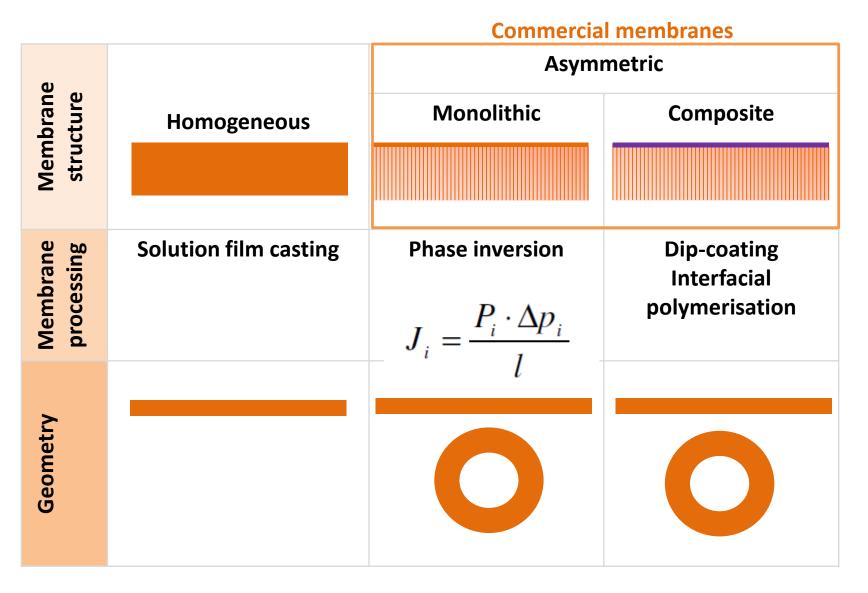
Polymeric and Mixed matrix membranes	Carbon molecular sieve	Palladium membranes
Combination of polymer matrix with inorganic fillers: MOFs, zeolites,	Pyrolized polymers. Unique pore structure	Thin Pd supported membranes. High H2 permeability & selectivity
		the second secon
Applications	Applications	Applications
 CO₂ Pre-combustion (H₂/CO₂) CO₂ Post-combustion (N₂/CO₂) Biogas upgrading (CO₂/CH₄) Natural gas upgrading (CO₂/CH₄) 	 CO₂ Pre-combustion (H₂/CO₂) Biogas upgrading (CO₂/CH₄) 	 CO₂ Pre-combustion (H₂/CO₂) & pure H₂ production



Membrane development steps: from material to final product

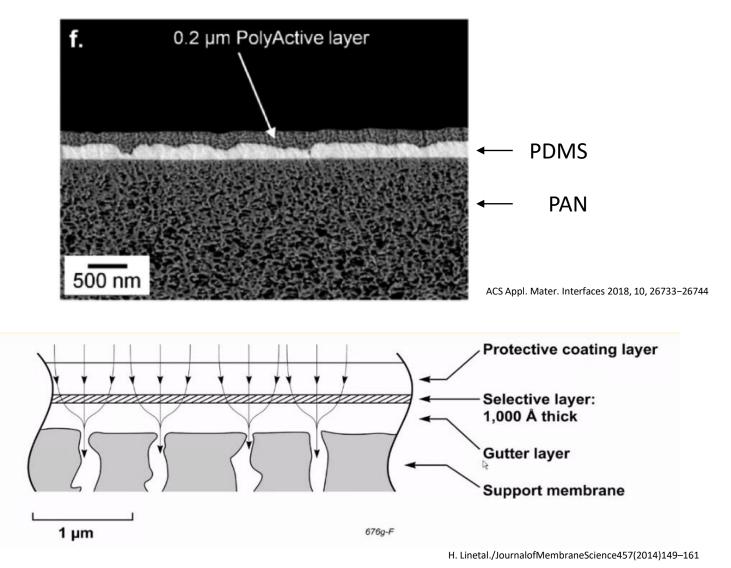
Outlook:

- ✓ Introduction to membrane processes
- ✓ Membrane structure and geometry for gas separation
- ✓ Membrane Development Strategy
- \checkmark Applications and Tecnalia examples

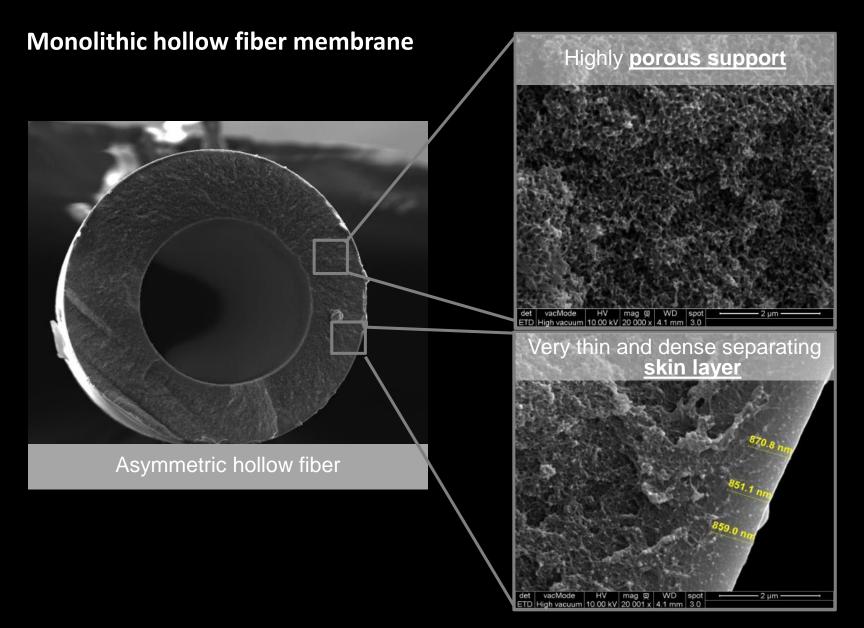

Separation with membranes

tecnalia Inspiring Business

MEMBRANE STRUCTURE AND GEOMETRY

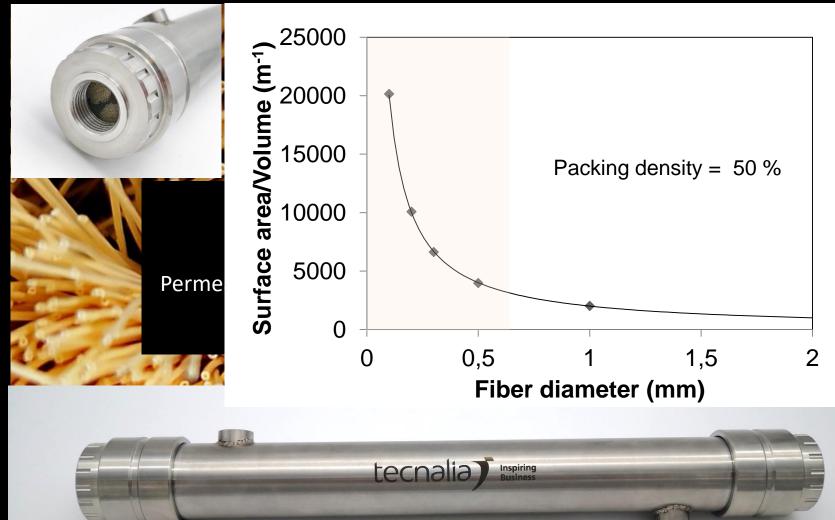


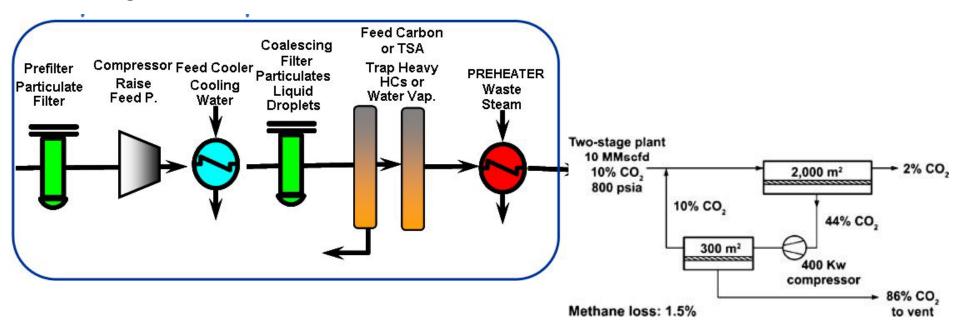
MEMBRANE STRUCTURE AND GEOMETRY



TFM: Thin film composite membrane

MEMBRANE STRUCTURE AND GEOMETRY




PRODUCTIVITY -

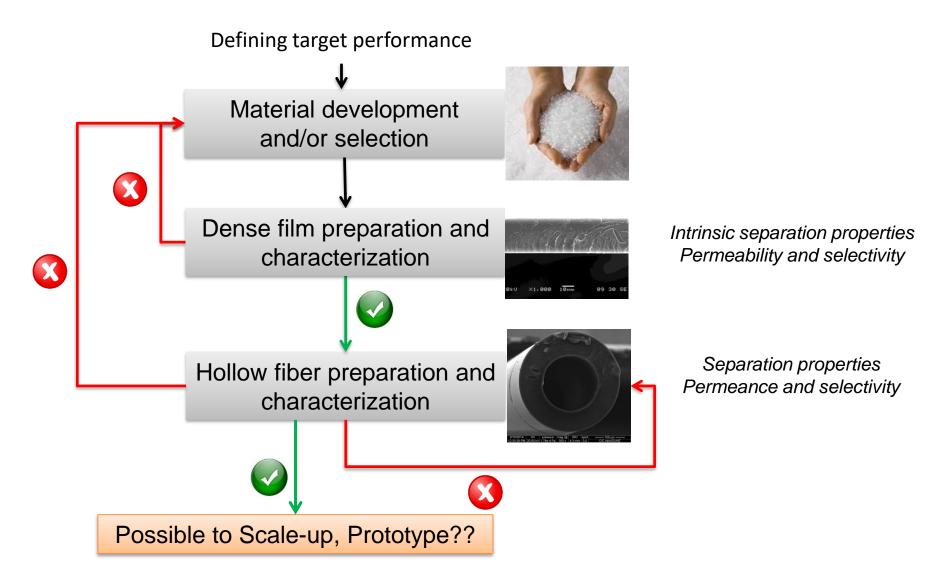
MEMBRANE GEOMETRY

Process design and membrane system components



Natural gas treatment: CH4/CO2

R.W. Baker, K. Lokhandwala **Natural gas processing with membranes: an overview** Ind Eng Chem Res, 47 (2008), pp. 2109-2121



Membrane Development Strategy

Membrane Development Strategy

Industrial requirements

- 4-20% CO₂ ingas from power generator
 - Low/Atmospheric pressure
 - Vapour, O_2 , SO_x , NO_x , NH_3 , ...
 - High flows 40,000 Nm³/h
- To be competitive with amine or 90% CO₂ capture for installed prices not less than 50 €/m²

Specifications	Value	Unit
P _{co2}	>2,250	GPU
CO ₂ /N ₂ selectivity	>30	
Temperature	100	ōC
Design pressure	7	bar
Costs	< 100*	€/m ²

*Target set by the BioCoMem project

<u>Haibo Zhai (2019)</u>

					tecnalia
Polymer	P _{CO2} (Barrer)	Selectivity CO ₂ /N ₂	Selectivity CO ₂ /CH ₄	Test conditions	Ref.
PEBAX 1657 (60PEO/PA6)	79	52,7	16,8	30 °C	1
PEBAX 1074 (55PEO/PA12)	110,67	51,4	11,09	25 °C	2
PEBAX 2533 (80PTMEO/PA12)	149	15	7,28	25 °C	3
Polyactive	202	44	15,2	35 °C	4
PE (Alathon 14)	12,6	13	-	-	5
6FDA-DAM	842,41	15,3	18	T = 35°C/ p = 100PSI	6
PPO	75,8	19,9	6,89	T ^a : 30°C	7
Matrimid	7	25	33,33	T ^a : 35ºC p: 3,5 bar	8
Cellulose Acetate	6,3	30	30	Tª: 30⁰C p: nd	7
Polysulfone	5,6	22,4	22,4	T ^a : 30ºC p: nd	7
Polietersulfone (Radel A)	2,51	30,61	29,9	T ^a : 35ºC p: 10 atm	9
Polyeterimide (Ultem)	1,32	28,09	37,71	T ^a : 30°C p: nd	7
P84	0,99	40,20	>40	T ^a : 25°C	10

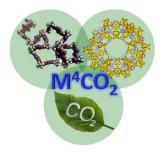
1. JMS 467(2014)269–278

2. Chemical Engineering Research and Design 117 (2017) 177-189

3. Silicon 10, 1461–1467 (2018)

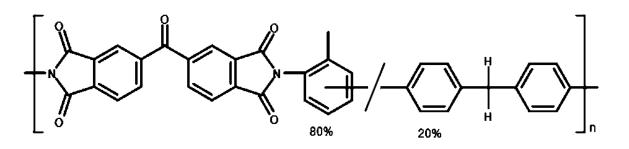
4. JMS 535 (2017) 350-356

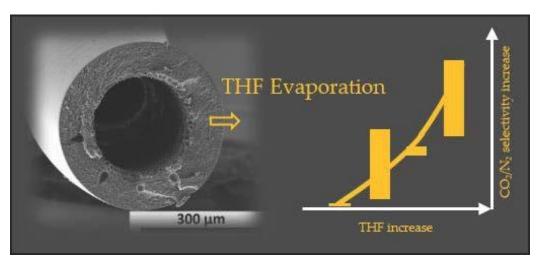
5. Bixler, H. J.; Sweeting, O. J. In Science and Technology of Polymer Films; Sweeting, O. J., Ed.; Wiley-Interscience: New York, 1971; pp 1–130.


6. Polymer 54 (2013) 6226-6235

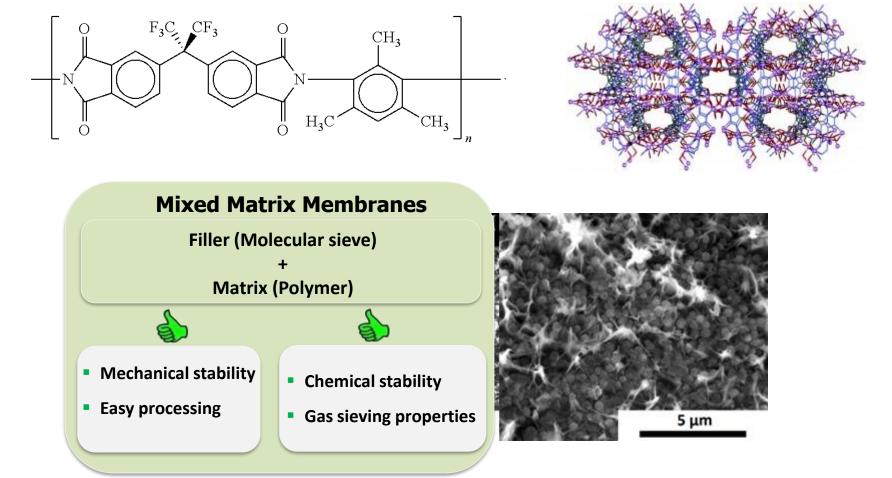
7. Abetz, V., et all Adv. Eng. Mater., 8 (2006) 328-358.

8. Polymer 49 (2008) 1594


9. JMS 277 (2006) 28-37


10. JMS 216 (2003) 195-205

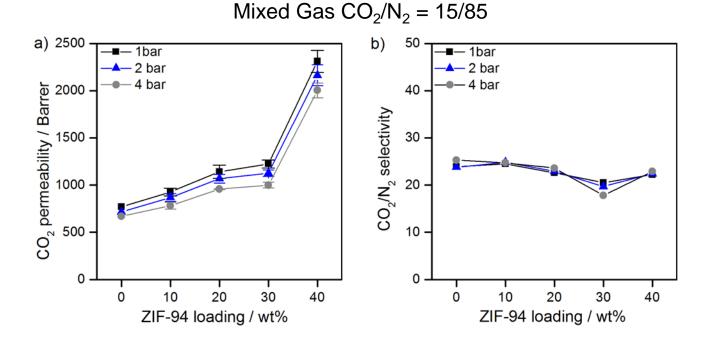
P84 Asymmetric hollow fiber membranes


- highly thin (~56 nm) defectfree skin
- CO₂/N₂ selectivity of 40, and a CO₂ permeance of 23 GPU at 35 °C
- No post treatment necessary for post treatment
- Scaled up the process at 5000 m fiber with reproducible results

Etxeberria-Benavides, M.; Karvan, O.; Kapteijn, F.; Gascon, J.; David, O. Fabrication of Defect-Free P84[®] Polyimide Hollow Fiber for Gas Separation: Pathway to Formation of Optimized Structure. Membranes 2020, 10, 4.

И⁴CO.

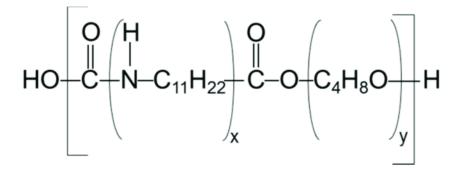
MMM flat sheet ZIF-94 Filler and 6FDA-DAM Polymer

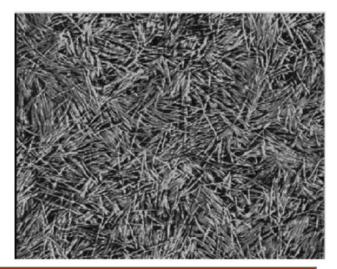


Miren Etxeberria-Benavides, Oana David, Timothy Johnson, Magdalena M. Łozińska, Angelica Orsi, Paul A. Wright, Stefan Mastel, Rainer Hillenbrand, Freek Kapteijn, Jorge Gascon, High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer, Journal of Membrane Science, Volume 550, 2018, Pages 198-207

M⁴CO₂

IMM flat sheet ZIF-94 Filler and 6FDA-DAM Polymer




Bi Co Mem

Post-combustion CO₂ capture

Bio based PEBAX co-polymers

Polymer	P _{co2} (Barrer)	Selectivity CO ₂ /N ₂	Selectivity CO ₂ /CH ₄	Test conditions	Ref.
PEBAX 1657 (60PEO/PA6)	79	52,7	16,8	30 °C	1
PEBAX 1074 (55PEO/PA12)	111	51,4	11,09	25 °C	2
PEBAX 2533 (80PTMEO/PA12)	149	15	7,28	25 °C	3
Polyactive	202	44	15,2	35 °C	4
Bio-PEBA	320	46,6	14,2	35 ⁰C	Biocomem

www.biocomem.eu

Thank you for your attention Questions

Visit our blog: http://blogs.tecnalia.com/inspiring-blog/

www.tecnalia.com

System simulation for integration of CO₂ capture technologies into steelworks and CCUS clusters

<u>Vincenzo Spallina¹</u>, Sergey Martynov², Richard Porter², Haroun Mahgerefteh²

¹Department of Chemical Engineering and Analytical Science, University of Manchester ²Department of Chemical Engineering, University College London

email: vincenzo.spallina@manchester.ac.uk

 International Workshop on CO₂ Capture and Utilization 16-17 February 2021

The contents of this presentation are the responsibility of University of Manchester University & University College London and do not necessarily reflect the opinion of the European Union.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418

The University of Manchester

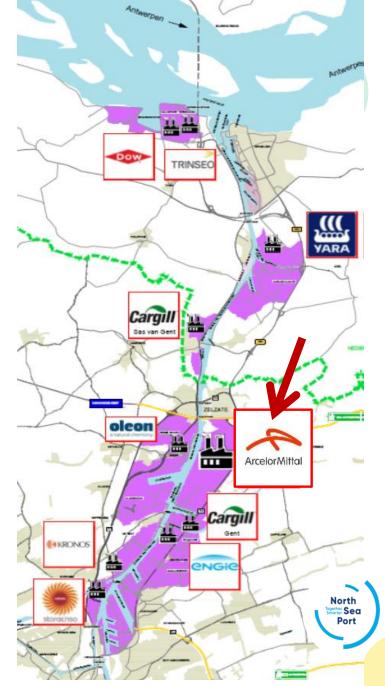
Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters

Start date: End date: Overall budget: Coordinator: 1 April 2020

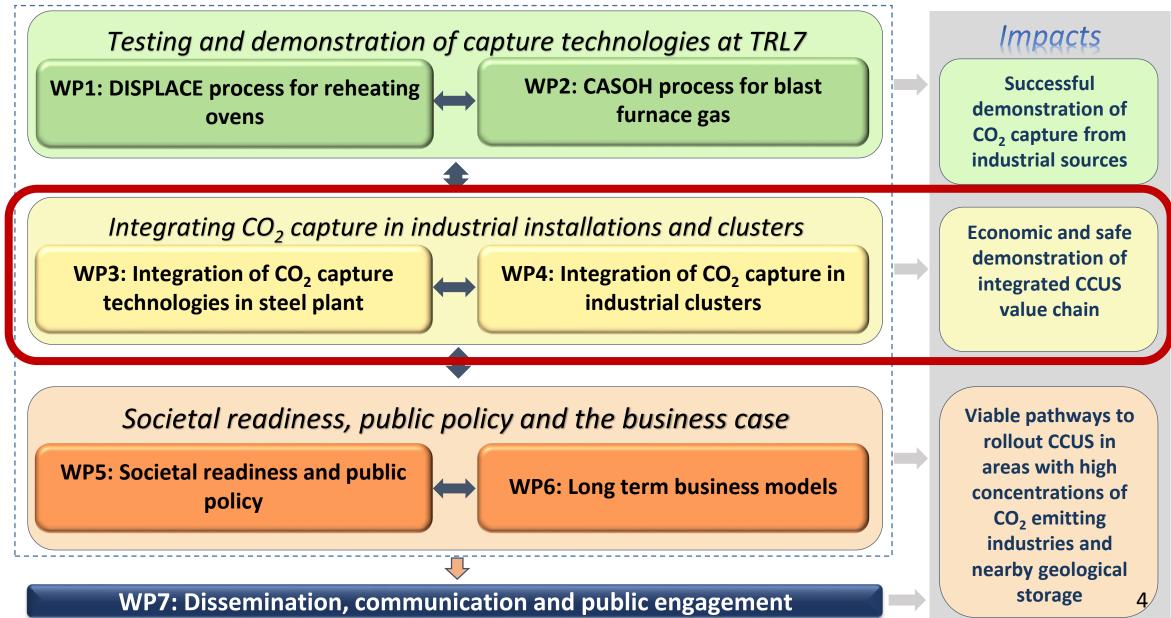
31 March 2024

€ 13,845,496

Prof. Haroun Mahgerefteh, University College London



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418


C⁴U: Headline Objectives

- Elevate two promising CO₂ solid based capture technologies from TRL5 to TRL7 & design for optimal integration in the steel industry
- Analyse the economic, environmental and business impacts of large scale process as part of the North Sea Port industrial cluster including CO₂ quality for the pipeline transportation & storage infrastructure
- Develop and test approaches with stakeholders and end-users to assess and advance societal readiness for CCUS in industrial clusters

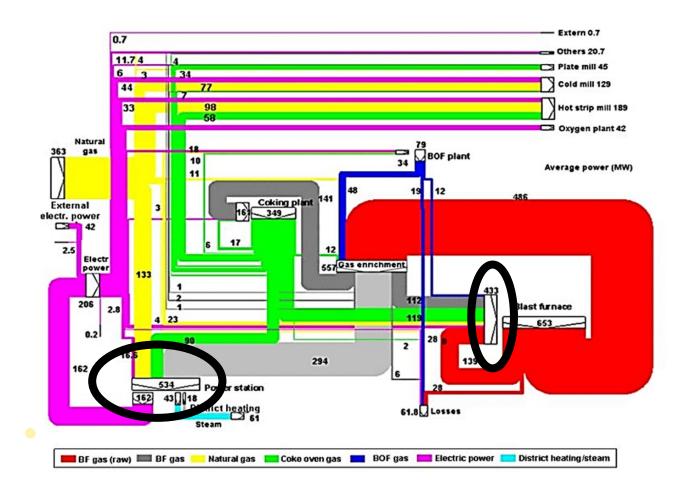
C⁴U PERT Diagram

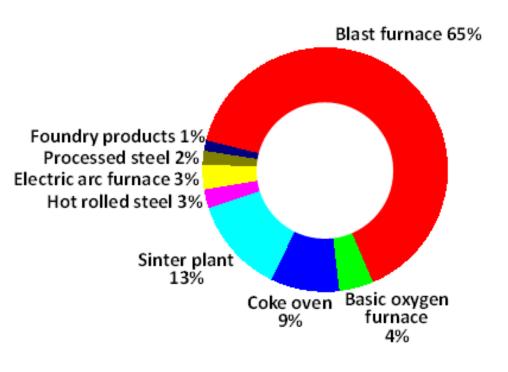
Presentation overview

- C⁴U processes integrated in the steel mill
- The selection of the benchmark processes and their technoeconomic performance
- The integration of the C⁴U in industrial clusters: challenge and opportunity
- Conclusions

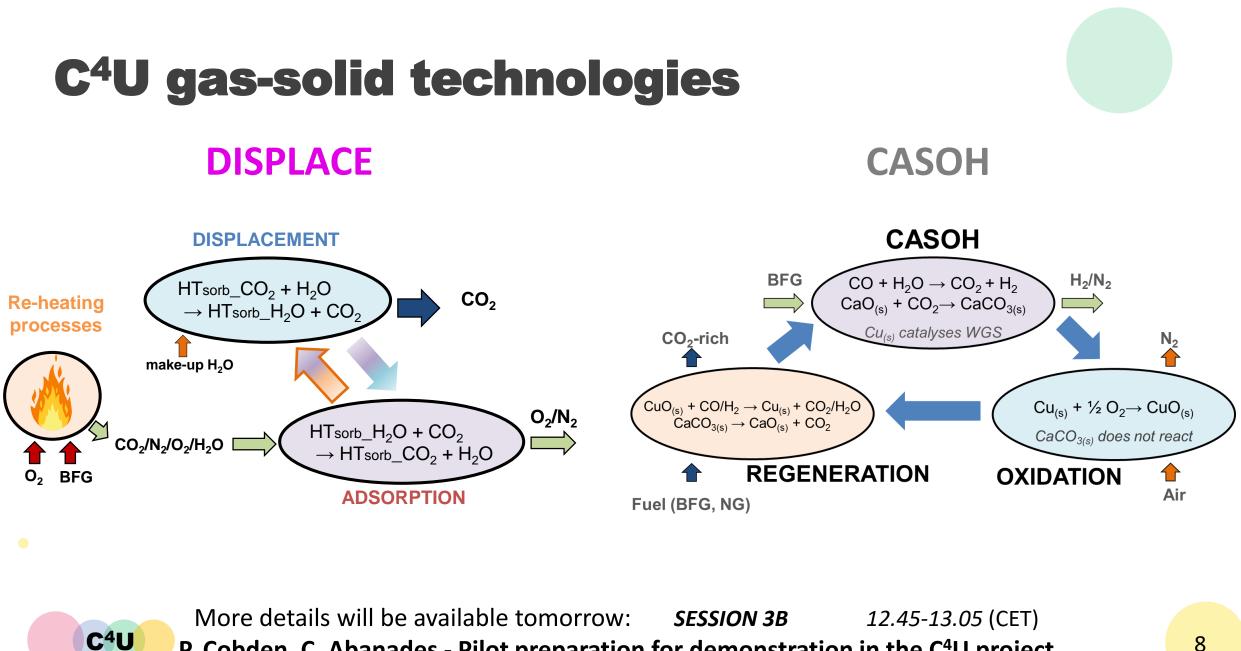
WP 3 - Integration of CO₂ capture technologies in steel plant

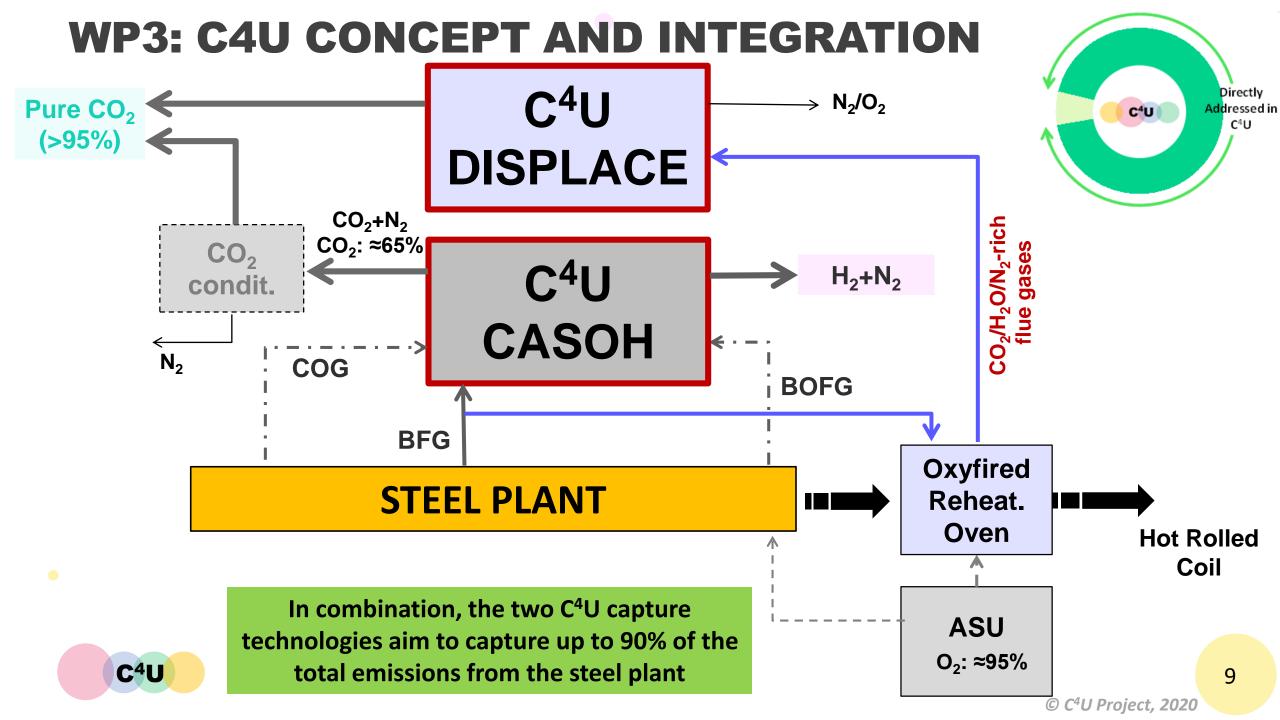
C⁴U




The University of Manchester

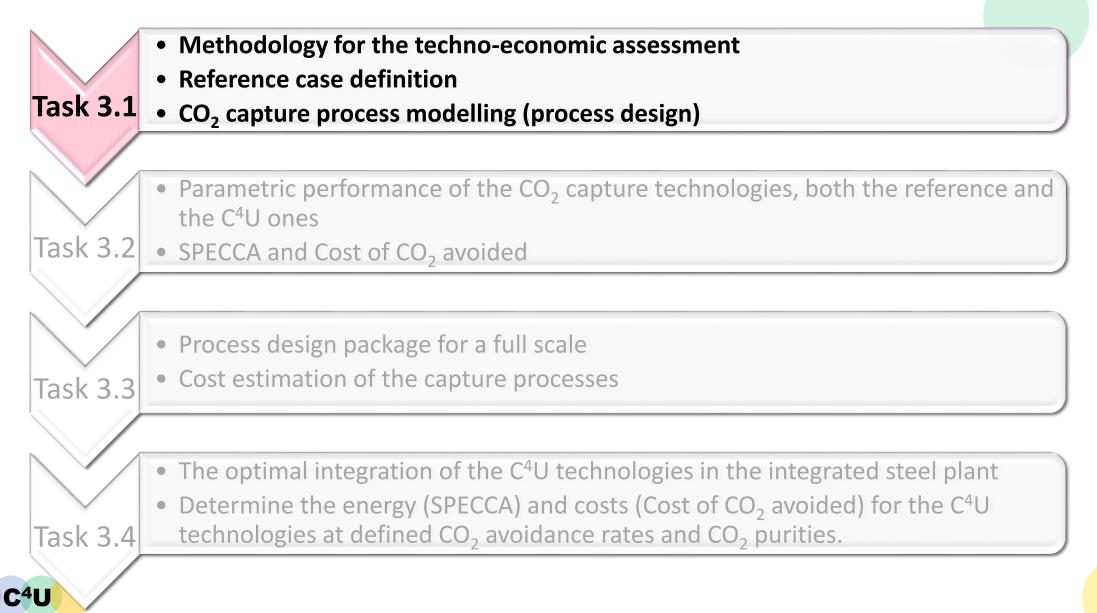
Integrated steelworks: a complex plant



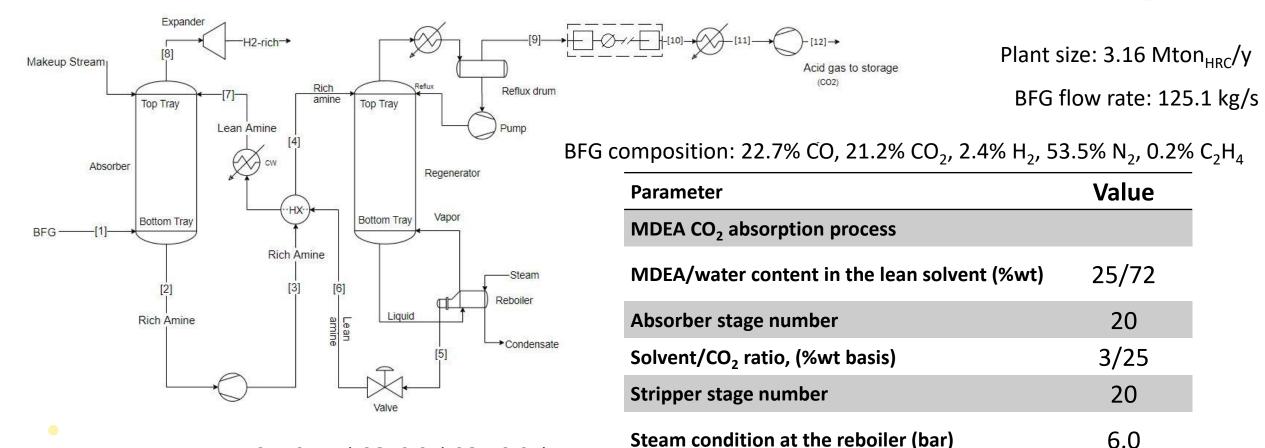

Breakdown of contribution to CO₂ emissions

R. Remus, S. Roudier, M. a. Aguado Monsonet, and L. D. Sancho, *Best Available Techniques (BAT) Reference Document for Iron and Steel Production*, vol. BREF-IS. 2013. Methodology for the free allocation of emission allowances in the EU ETS Post 2012–Sector report for the iron and steel industry. Ecofys, Fraunhofer ISI and Öko-Institute, November 2009.

P. Cobden, C. Abanades - Pilot preparation for demonstration in the C⁴U project


WP3: METHODOLOGY

- Methodology for the techno-economic assessment
- Reference case definition
- **Task 3.1** CO₂ capture process modelling (process design)
 - Parametric performance of the CO₂ capture technologies, both the reference and the C⁴U ones
- Task 3.2 SPECCA and Cost of CO₂ avoided


C⁴U

- Process design package for a full scale
- Task 3.3• Cost estimation of the capture processes
 - The optimal integration of the C⁴U technologies in the integrated steel plant
 - Determine the energy (SPECCA) and costs (Cost of CO_2 avoided) for the C⁴U
- Task 3.4 technologies at defined CO_2 avoidance rates and CO_2 purities.

WP3: METHODOLOGY

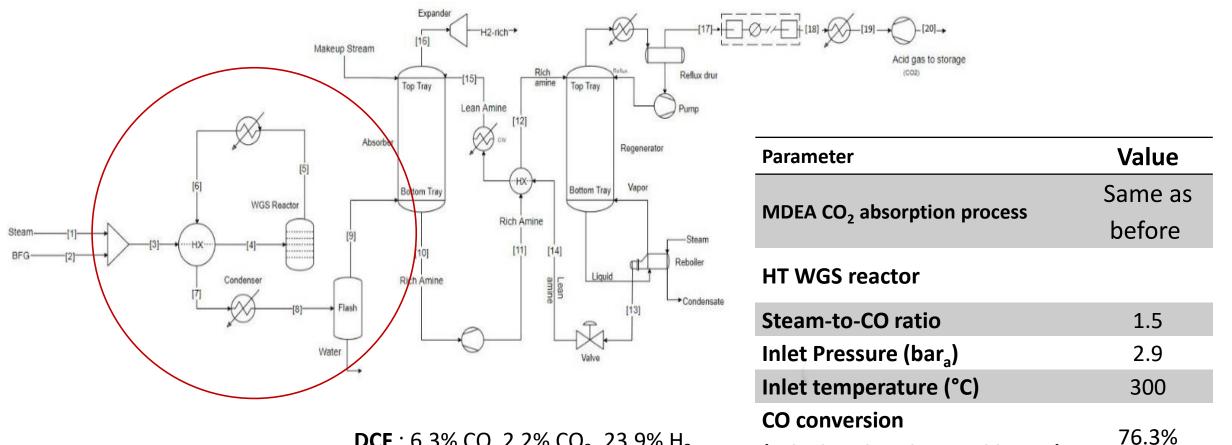
Benchmark process: MDEA pre-combustion separation – Base case

CO₂ delivery pressure (bar)

CO₂ delivery temperature (°C)

 $\begin{array}{l} \textbf{DCF}: 27.4\% \text{ CO}, \ 0.9\% \text{ CO}_2, \ 2.9\% \text{ H}_2, \\ 64.7\% \text{ N}_2, \ 0.2\% \text{ C}_2\text{H}_4, \ 3.7\% \text{ H}_2\text{O} \end{array}$

C⁴U


© C⁴U Project, 2020

110

25

12

Benchmark process: MDEA pre-combustion separation – Enhanced Capture

DCF : 6.3% CO, 2.2% CO₂, 23.9% H₂, 61.8% N₂, 5.5% H₂O

(calculated at the equilibrium)

METHODOLOGY: MAIN INDEXES

CO₂ capture rate of the technology

$$CCR[\%] = 1 - \frac{\left(\dot{N}_{CO_2} + \dot{N}_{CO} + \sum \zeta_c \cdot \dot{N}_c\right)_{out}}{\left(\dot{N}_{CO_2} + \dot{N}_{CO} + \sum \zeta_c \cdot \dot{N}_c\right)_{in}}$$

Specific Primary Energy Consumption for CO₂ Avoided

$$SPECCA\left[\frac{MJ_{LHV}}{kg_{CO_2}}\right] = \frac{\left(\frac{1}{\eta_{capture}} - \frac{1}{\eta_{no,capt}}\right)}{E_{CO_2,no\ capt} - E_{CO_2,capture}}$$

Levelized Cost of Decarbonized Fuel

$$LCODF\left[\frac{\notin}{GJ}\right] = \frac{TAC\left[\frac{M\notin}{y}\right]}{\dot{m}_{DCF} \times LHV_{DCF} \times h/y} \times 1000$$

CO₂ avoidance cost

$$CCA\left[\frac{\notin}{t_{CO_2}}\right] = \frac{LCODF_{Capture} - LCODF_{ref}}{E_{CO_2,ref} - E_{CO_2,capture}}$$

Additional cost of HRC for decarbonised steel mill

$$\Delta C_{HRC} \left[\frac{\notin}{t_{HRC}} \right] = \frac{TAC_{capture} + \Delta C_{el,capture} - TAC_{no \ capt}}{\dot{m}_{HRC}}$$
14

© C⁴U Project, 2020

PERFORMANCE COMPARISON – TECHNO-ECONOMICS

	Unit	no capture	Base case	Enhanced
Steel mill size	Mt _{HRC} /y	3.16	3.16	3.16
Carbon Capture Rate	[%]		46%	83%
Cold gas efficiency	[%]	100.0%	100.0%	90.5%
Overall energy efficiency	[%]	100.0%	81.8%	56.7%
CO ₂ specific emissions	[kg _{CO2} /GJ _{LHV}]	267.1	153.38	51.19
CO ₂ capture avoidance	[%]		42.6%	80.8%
ΔCO_2 specific emissions ^{a)}	[kg _{CO2} /t _{HRC}]	711.9	383.56	120.28
SPECCA	$[MJ_{LHV}/kg_{CO2}]$		1.96	3.54

	Unit	no capture	Base case	Enhanced
LCODF	[€/GJ]	5.20	9.73	14.78
∆cost of HRC	[€/t _{HRC}]		11.99	21.65
CO ₂ avoidance cost	[€/t _{co2}]		39.84	49.38

WP4 - Integration of CO₂ Capture in Industrial Clusters

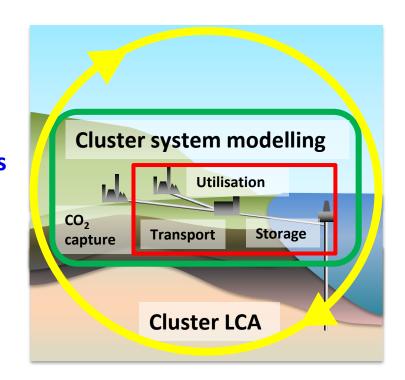
WP4: OBJECTIVES

C⁴U

Cluster 3 industrial port areas North Sea Port, Port of Antwerp and Port of Rotterdam responsible of 1/3 or CO_2 emissions from Benelux, approx. 60 Mt/a

Define common CO_2 transportation infrastructure for geological storage up to 10 Mt CO_2 /a in the depleted gas fields (P18 fields)

Perform the whole economic, safe and environmental LCA of the integrated industrial cluster of the North Sea Port area.



WP4 - INTEGRATION OF CO₂ CAPTURE IN INDUSTRIAL CLUSTERS

Task 4.1 Transport, utilisation and storage safety and operability impacts Experimental and computational studies to evaluate the impacts of impurities in the CO_2 streams captured from steel plants, on the CO_2 utilisation, transport and storage

Task 4.2 CCUS cluster whole-system modelling and operational logistics techno-economic evaluation to assess energy and cost penalties as a function of the CO_2 purity in the North Sea Port cluster for 2030 and 2050 decarbonisation scenarios.

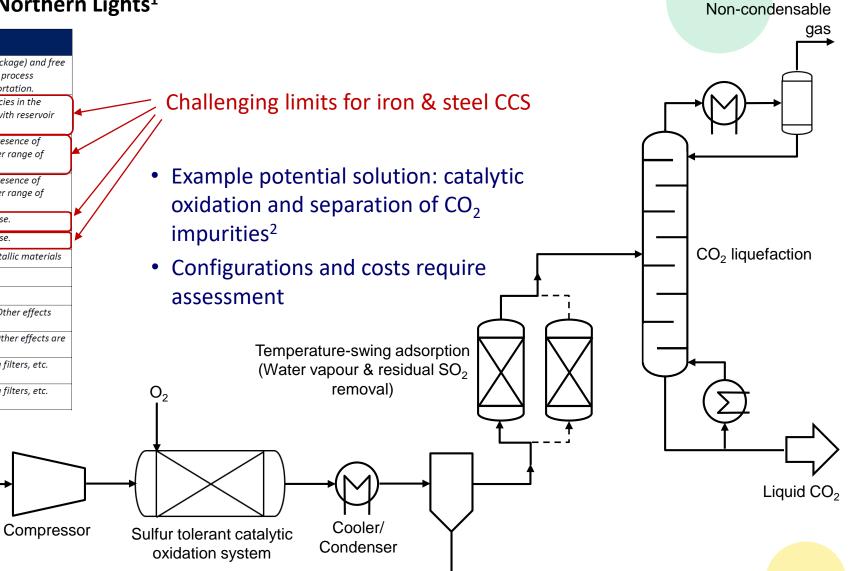
Task 4.3 Life Cycle Assessment (LCA) of the North Sea Port CCS cluster LCA assessment of the environmental impact of the North Sea Port CCS cluster.

18

WP4: CO₂ purification challenge

European CO₂ quality specifications; e.g. Northern Lights¹

Component	Concentration ppm (mole)	
Water, H₂O	≤ 30	Required to avoid formation of hydrates (blockage) and free water (corrosion) in the pressure vessels and process systems used for interim storage and transportation.
Oxygen, O₂	≤ 10	Required to avoid formation of corrosive species in the lower well completion where the CO2 mixes with reservoir brine containing chlorides.
Sulphur oxides, SOx	≤ 10	Required to avoid accelerated corrosion in presence of water. Value set conservatively to allow wider range of materials.
Nitric oxide/ Nitrogen dioxide, NOx	≤ 10	Required to avoid accelerated corrosion in presence of water. Value set conservatively to allow wider range of materials.
Hydrogen sulphide, H₂S	≤9	Toxic to personnel in case of accidental release.
Carbon monoxide, CO	≤ 100	Toxic to personnel in case of accidental release.
Amine	≤ 10	May react with and degrade several non-metallic materials
Ammonia, NH₃	≤ 10	Effects unknown
Hydrogen, H ₂	≤ 50	May cause embrittlement of metals.
Formaldehyde	≤ 20	May react with oxygen to form formic acid. Other effects are unknown
Acetaldehyde	≤ 20	May react with oxygen to form acetic acid. Other effects are unknown
Mercury, Hg	≤ 0.03	Toxic to personnel entering vessels, replacing filters, etc. May cause embrittlement of metals.
Cadmium, Cd	≤ 0.03	Toxic to personnel entering vessels, replacing filters, etc.
Thallium, Ti	(sum)	May cause metal embrittlement of metals.


Cooler/

Condenser

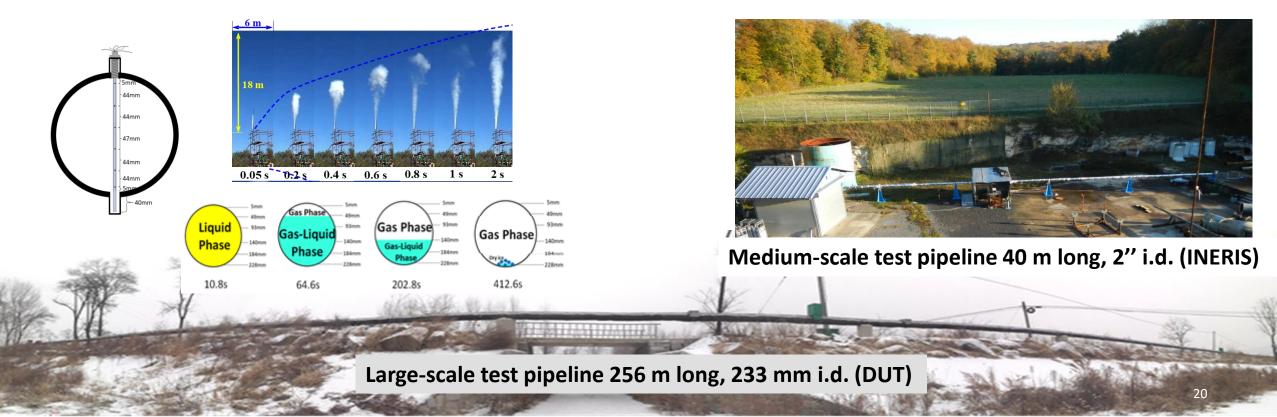
Compressor

C⁴U

Crude CO₂

Water

¹ Norwegian CCS Demonstration Project Norcem FEED, https://ccsnorway.com/ ² Praxair. EP0952111A1. CO₂ purification system, 1999.


Water

19

PIPELINE DECOMPRESSION EXPERIMENTS

OBJECTIVES

This task involves performing controlled pipeline decompression tests to assess the risk of solid CO₂ formation and transition to two-phase flow

CONCLUSIONS

The C⁴U project will assess two advanced CO₂ capture technologies with respect to the solventbased process which currently costs 50 €/tonCO₂ with a maximum capture efficiency of 83%

The sensitivity analysis at large scale on C⁴U technologies will include feedstock quality and CO_2 quality uses interlinking 2 WPs

The study will focus specifically on 3 industrial port areas North Sea Port, Antwerp and Rotterdam responsible of 1/3 or CO_2 emissions from Benelux, approx. 60 Mt/a

Perform the whole economic, safe and environmental LCA of the integrated industrial cluster of the North Sea Port area

21

Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters

THANK YOU

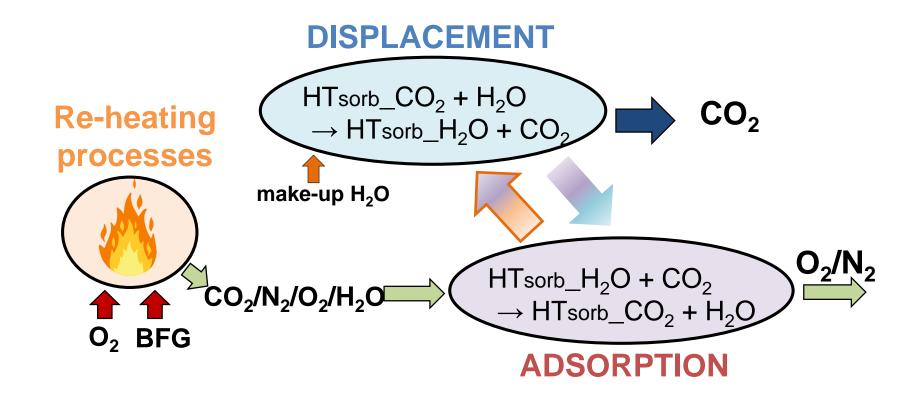
Questions ?

The contents of this presentation are the responsibility of University of Manchester & University College London and do not necessarily reflect the opinion of the European Union.

Union's Horizon 2020 research and innovation programme under grant agreement No 884418

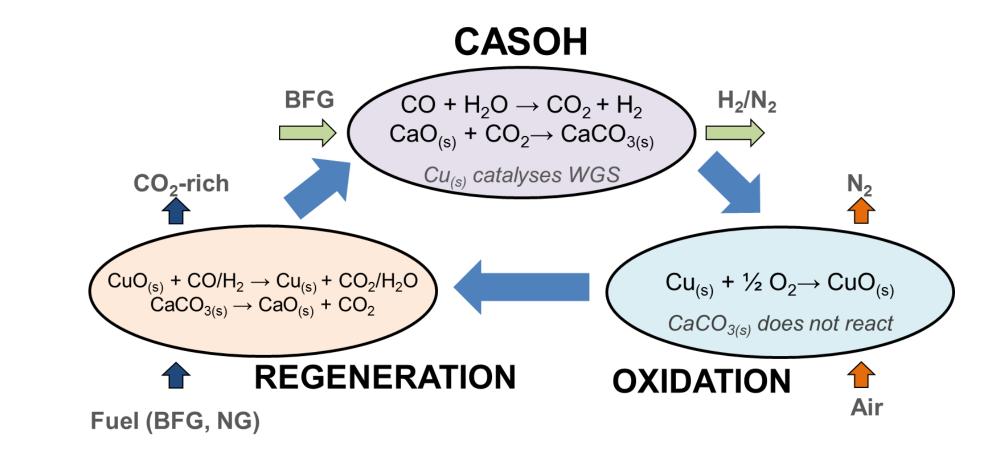
Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters

Supplementary slides



University College London and do not necessarily reflect the opinion of the European Union.

programme under grant agreement No 884418


DISPLACE: High temperature sorption-displacement process using hydrotalcites for CO₂ sorption and recovery of steam

*shown above for CO_2 recovery from oxy-combustion use of Blast Furnace Gas

CASOH: Calcium Assisted Steel mill Off-gas Hydrogen process for blast furnace gas

C⁴U

PERFORMANCE COMPARISON - TECHNICAL

	Base case	Enhanced
Total Fuel Input (MW)	294.67	294.67
Net power consumption (MW)	14.9	33.7
CO ₂ flow rate for storage (kg/s)	36.5	65.8
Specific electricity demand (kWh/kg _{CO2})	0.113	0.142
Reboiler heat duty (MW)	50.1	91.4
Reboiler heat duty/CO ₂ flow rate for storage	1.3	1.3
(MJ/kg _{CO2})		
Required heat for WGS (MW)	-	66.5
CO ₂ capture efficiency (%)	46.5	83.80
CO ₂ purity for storage (%)	98.2	98.1
Thermal energy output (DCF)(MW)	294.61	266.80

PERFORMANCE COMPARISON – TECHNICAL

	Unit	no capture	Base case	Enhanced
Steel mill size	Mt _{HRC} /y	3.16	3.16	3.16
Thermal input (BFG LHV)	[MW]	294.67	294.67	294.67
Thermal output				
(decarbonised fuel LHV)	[MW]	294.67	294.61	266.80
Heat requirements	[MW]		50.62	142.47
Electricity requirements	[MW]		14.90	33.62
Carbon Capture Rate	[%]		46%	83%
Cold gas efficiency	[%]	100.0%	100.0%	90.5%
Overall energy efficiency	[%]	100.0%	81.8%	56.7%
CO ₂ specific emissions	[kg _{CO2} /GJ _{LHV}]	267.1	153.38	51.19
CO ₂ capture avoidance	[%]		42.6%	80.8%
ΔCO_2 specific emissions ^{a)}	$[kg_{CO2}/t_{HRC}]$	711.9	383.56	120.28
SPECCA	[MJ _{LHV} /kg _{CO2}]		1.96	3.54

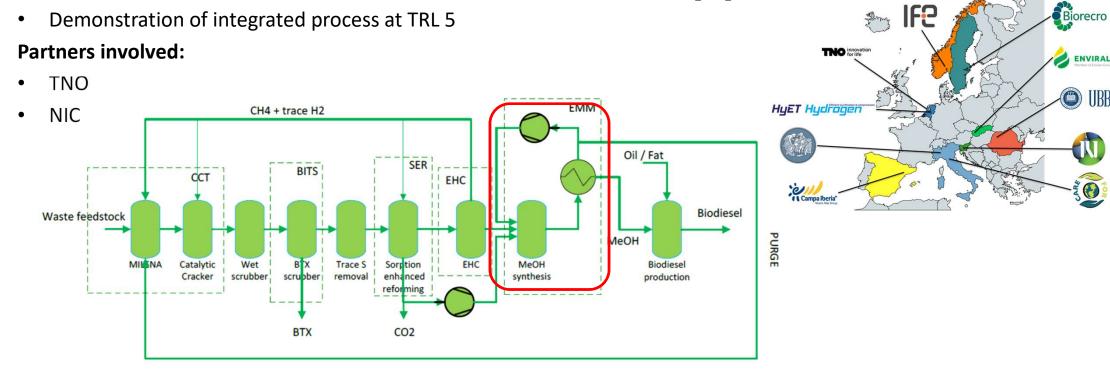
PERFORMANCE COMPARISON - ECONOMICS

	Unit	no capture	Base case	Enhanced
Steel mill size	Mt _{HRC} /y	3.16	3.16	3.16
MDEA unit	[M€]		37.10	56.65
WGS reactors+ heat exchangers	[M€]		0	12.36
Gas expander	[M€]		3.73	2.80
CO ₂ compressor units	[M€]		16.66	19.98
Pumps	[M€]		0.02	0.02
Total Equipment Cost	[M€]		57.50	91.81
Total Direct Plant Cost	[M€]		117.31	187.29
Total Plant Cost	[M€]		155.14	247.69
Annualised Plant Cost	[M€/y]		17.69	28.24
Fuel Cost	[M€/y]	43.49	43.49	43.49
variable, heat and electricity	[M€/y]		12.44	27.78
fixed O&M	[M€/y]		7.76	12.38
Total Annualised cost	[M€/y]	43.49	81.37	111.9
LCODF	[€/GJ]	5.20	9.73	14.78
∆cost of HRC	[€/t _{HRC}]		11.99	21.65
CO ₂ avoidance cost	[€/t _{co2}]		39.84	49.38

CONVERGE: CarbON Valorisation in Energy-efficient Green fuels

Green methanol synthesis for biodiesel production

16-17 th February, Converge Workshop


Objectives: Membrane assisted methanol synthesis

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

Membrane assisted methanol synthesis.

- Develop stable membranes at reaction conditions
- Develop multi-tube membrane reactor, targeted conversion for feed CO_2/H_2 33% per pass

Tuesday, February 16, 2021

2

300

Temperature (°C)

1E-05

1E-06

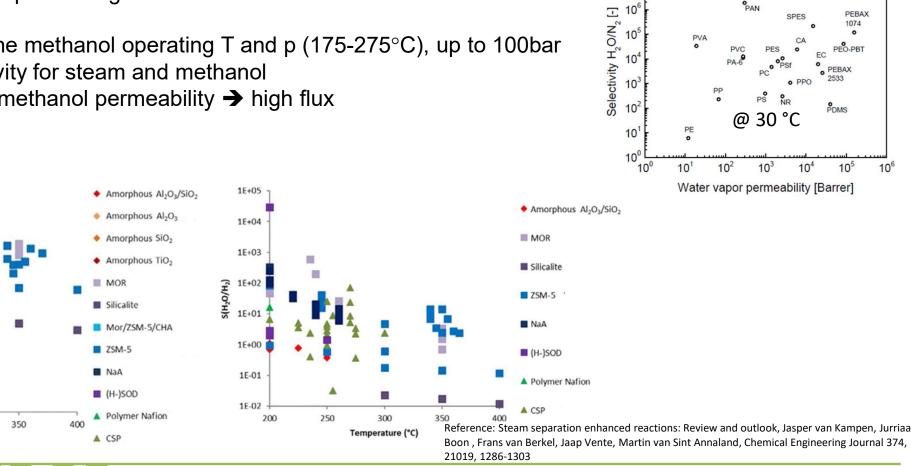
1E-07

1E-08

1E-09

1E-10

200


250

H₂O Permeance (mol m⁻² s⁻¹ Pa⁻¹)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

10

Tuesday, February 16, 2021

Membrane development targets:

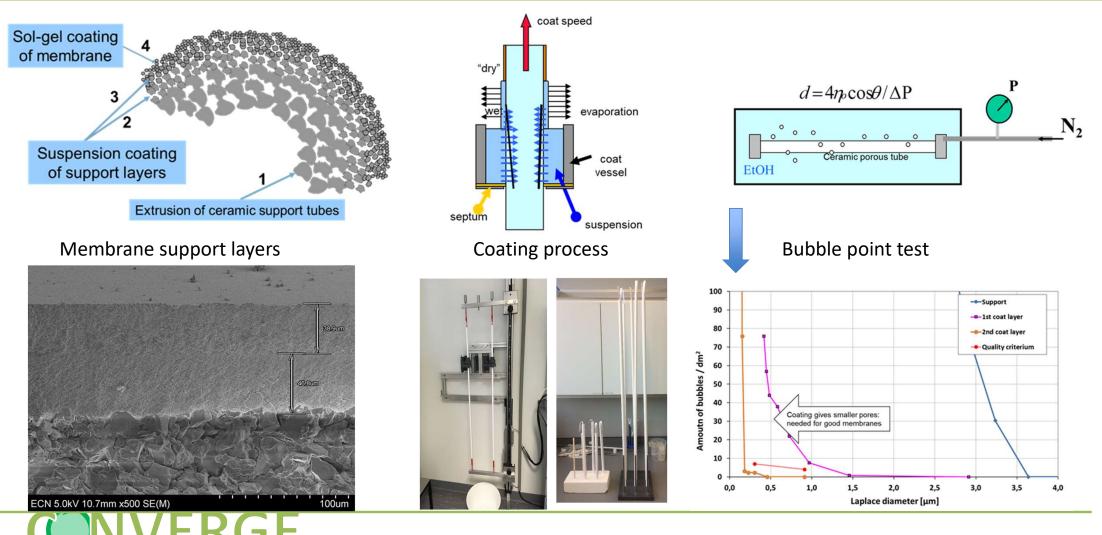
- Stability at the methanol operating T and p (175-275°C), up to 100bar 1)
- High selectivity for steam and methanol 2)
- High steam/methanol permeability \rightarrow high flux 3)

Membrane development - target

SPEEK

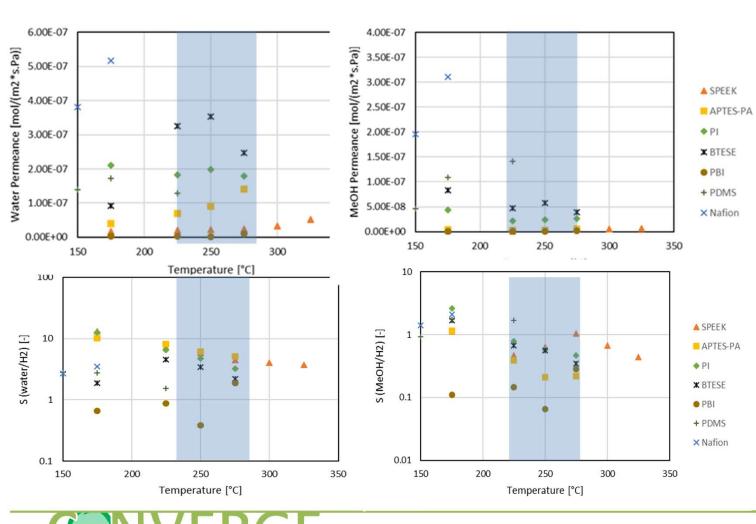
o PI

3


- Amorphous microporous APTES-PA (<u>Aminopropyl triethoxysilane-Polya</u>mide) BETSE (1, 2-<u>b</u>is (<u>triethoxysilyl) ethane</u>)
 Polymeric SPEEK (sulfonated poly(ether ether ketone)) PI (Poly Imides) PBI (Polybenzimidazol) PDMS (Polydimethylsiloxane)
 - Li-Nafion

Membrane synthesis procedure -support

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135



Tuesday, February 16, 2021

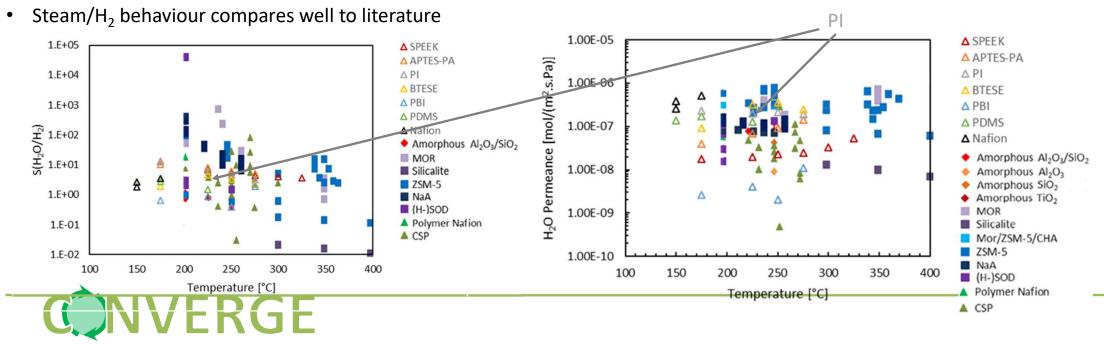
Results membrane separation tests

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

Test conditions:

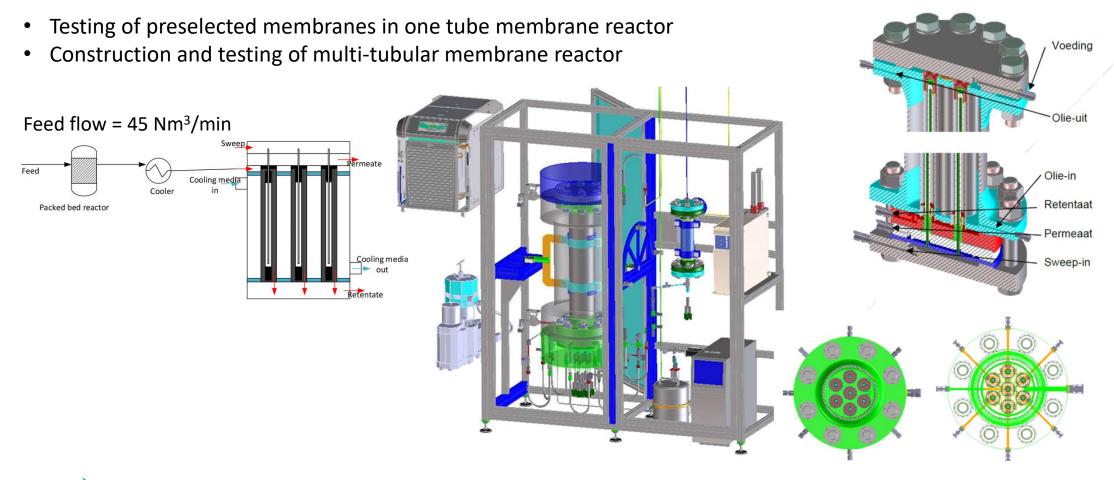
- p_{feed} =35 bar, p_{perm} =1.5 bar, no sweep
- 60% H₂, 10% (50/50)methanol/steam, 20% CO₂, 1% CO, 9% N₂

Nafion, BETSE, PI highest steam and MeOH permeance


- BETSE performance decreases at 275°C, Nafion not selective at T>225°
- H₂O/H₂ selectivity highest for APTES-PA, SPEEK and PI
- MeOH/H₂ selectivity highest for PDMS 1.7, PI and BETSE ~ 0.6-0.8
- Pre-selection:
 1) PI
 2) BETSE
 3) APTES-PA
 PDMS, Nafion → no selectivity > 225 °C
 SPEEK→ low H₂O and MeOH permeance (10X lower than PI)
 PBI → low permeance, low selectivity

Conclusions

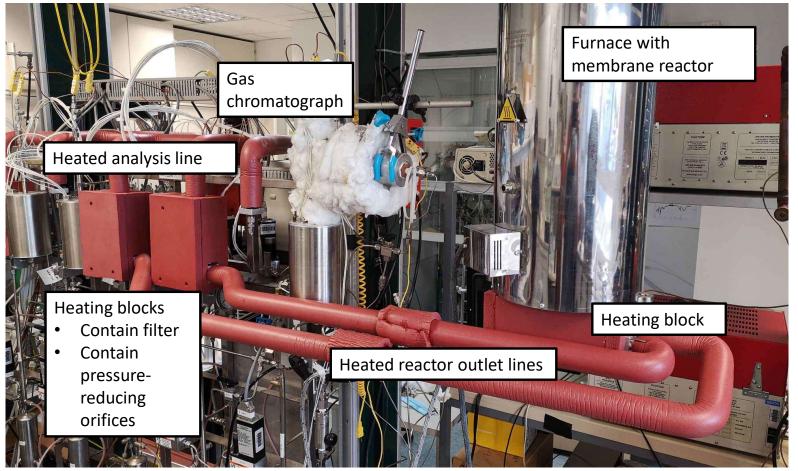
- PI membrane preselected as the most promising to reach conversion targets. Membrane performance comparison steam/MEOH/mix (T_{range} =225-250 °C)
 - ΡI BETSE APTES H_2O/H_2 selectivity: 4.7-6.5 3.5-4.3 6-8 ٠ $MEOH/H_2$ selectivity: 0.6-0.7 0.6-0.8 0.2-0.4 ٠ H₂O permeance: PI/2.3 1.6[.]Pl ΡI ٠
 - MeOH permeance: PI 2.2 PI PI/8.4 H₂O>H₂>MEOH>CO₂>CO \approx N₂



CarbON Valorisation in Energy-efficient Green fuels

Next steps

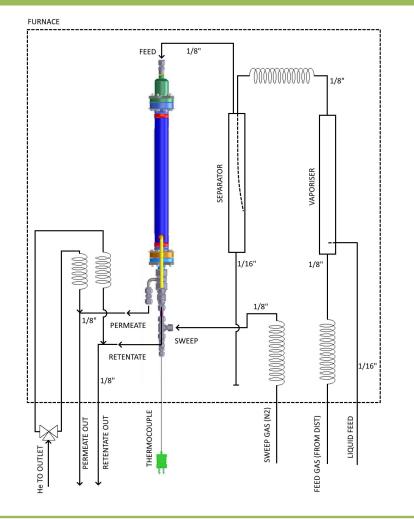
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

Testing rig upgrade at NIC

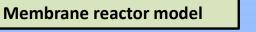
- Testing of the prominent membranes supplied by TNO.
- Advantages of NIC system:
 - high pressure op.
 (80 bar) and
 - high temperature op. (350°C).



Inside the furnace with the membrane module

- Feed gas saturation with H₂O or MeOH to:
 - determine permeation and
 - simulate thermodynamical equibrium gas mixture.
- He dillution to determine in-situ flow rates of permeate and retentate by gas chromatography.
- CO₂ is pumped into the feed gas using HPLC pump before membrane module.

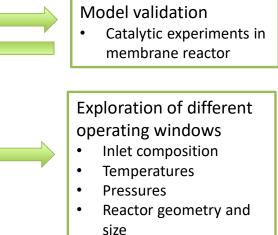
Modelling procedure


Selected membrane characteristics

- Permeances for all compounds
- T and P dependence
- Determined empirically

Reaction kinetics for the selected catalyst

- Packed-bed reactor kinetic catalytic tests
- Regression of kinetic data using a PBR model (already developed)



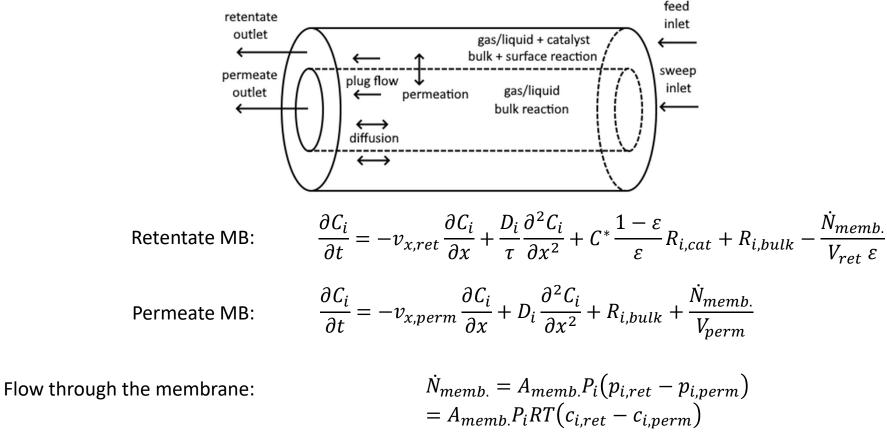
Mass transport phenomena

- Convection
- Diffusion
- Permeation through the membrane

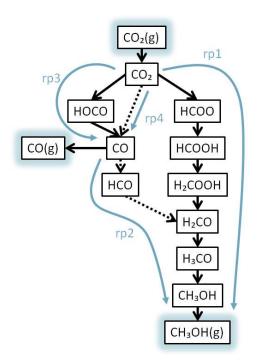
Reaction phenomena

- Catalytic surface
 microkinetic reactions
- Adsorption/desorption

Process optimization


Multi-tube system modelling

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

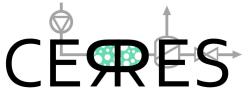

Model development

Model development: Kinetics of MeOH synthesis

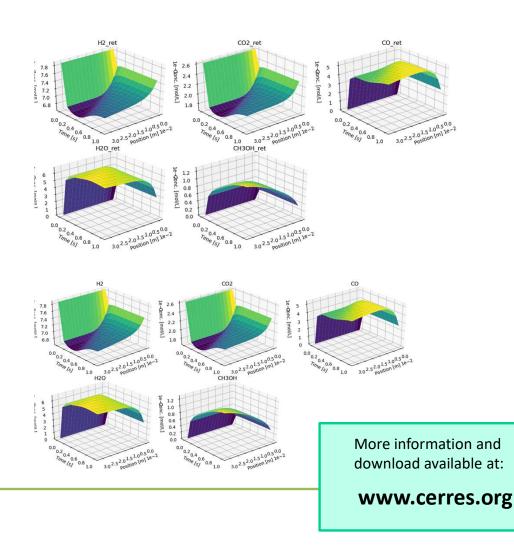
Overall reaction scheme. Black arrows represent the elementary reaction steps and blue arrows the reaction pathways. Reaction species in black squares without "(g)" are adsorbed on the catalyst's surface.

- Surface reaction mechanism for methanol synthesis on CuZnAl
- Active sites: Cu (&), Zn (*)
- 5 gas phase species, 11 surface species
- 16 reversible surface reactions, 5 of which are adsorption/desorption reactions
- The constants obtained from literature were fitted to experimental data

	optimized			original Zn/Cu(211)				
Reaction	Afor [s-1]	Eafor [kJ/mol]	Aback [s-1]	Eaback [kJ/mol]	Afor [s-1]	Eafor [kJ/mol]	Aback [s-1]	Eaback [kJ/mol]
H2 + & + & ≓ H& + H&	1.00E+03	51.00	1.77E+12	78.00	1.00E+03	51.00	1.77E+12	78.00
H& + CO2* ⇔ HOCO*&	4.62E+13	83.80	8.23E+13	104.28	3.91E+12	95.53	1.00E+11	123.51
H& + H2CO*& ⇔ H3CO*& + &	3.12E+08	8.47	1.17E+11	88.29	4.66E+12	11.58	1.00E+11	114.82
H& + H3CO*& ⇔ CH3OH*& + &	3.28E+12	112.01	6.98E+12	87.02	1.99E+14	143.77	1.44E+13	116.75
H& + CO2* ⇔ HCOO*&	1.69E+11	58.96	5.97E+14	142.86	3.57E+12	74.30	1.00E+11	188.16
H& + HCOO*& ⇒ HCOOH*& + &	4.69E+09	60.20	2.71E+10	75.73	7.93E+12	114.82	1.77E+11	48.25
H& + HCOOH*& ⇒ H2COOH*& + &	1.13E+12	87.74	6.71E+13	75.98	1.26E+12	58.86	9.57E+13	58.86
H2COOH*& + * ⇔ H2CO*& + OH*	1.82E+13	59.21	4.26E+11	17.08	2.53E+13	50.17	1.86E+11	16.40
H& + OH* ⇔ H2O*+ &	6.43E+09	72.66	2.89E+10	72.73	1.22E+13	77.19	4.83E+11	70.44
CO2* + & ⇒ CO& + O*	3.98E+12	46.16	1.57E+12	52.88	1.04E+13	76.23	8.40E+12	65.61
H& + O* ⇔ OH*+&	5.90E+12	309.13	5.05E+10	226.11	1.88E+13	116.75	1.00E+11	198.77
HOCO*& ⇒ CO& + OH*	3.16E+10	27.99	4.89E+11	65.23	6.60E+13	22.19	1.00E+11	58.86
CO2 + * ⇔ CO2*	7.53E+02	-2.29	2.9E+09	-29.13	7.41E+02	-2.01	1.00E+13	-30.88
CH3OH + * + & ⇒ CH3OH*&	2.59E+01	-0.99	1.34E+13	43.01	8.68E+02	-2.01	1.00E+13	39.56
H2O + * ⇔ H2O*	8.38E+02	-1.69	1.31E+12	39.45	1.16E+03	-2.01	1.00E+13	37.63
CO + & ⇒ CO&	2.86E+02	-0.98	3.25E+13	59.12	9.28E+02	-2.01	1.00E+13	98.42


Reactions and reaction rate constants (original from literature and fitted to experimental data)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135


Model development

• Modeling in the programme CERRES developed at NIC

- Simulation of 14 different types of chemical reactors (including membrane reactor)
- Complex user-defined chemical kinetics
- Model-experiment compare
- Parameter optimization
- Sensitivity analysis
- Efficient computation
- Plot results and export data
- Easy to use (graphical user interface)
- Free for academic/teaching use

The CONVERGE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 818135

CONVERGE: CarbON Valorisation in Energy-efficient Green fuels

WP4: Green methanol synthesis for biodiesel production

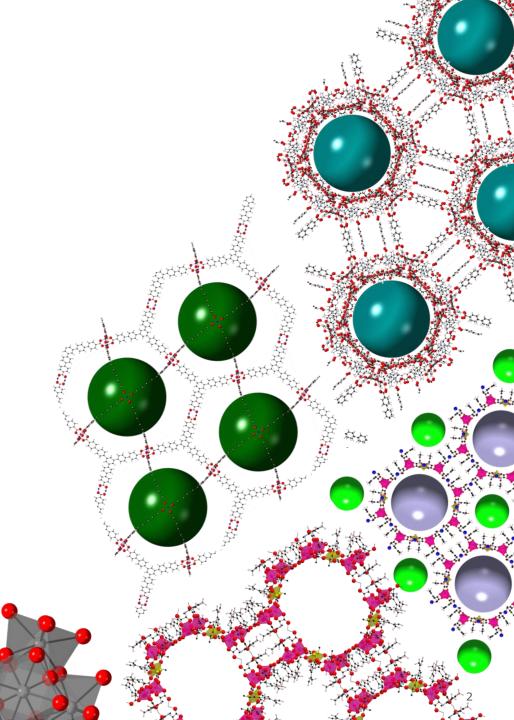
Johnson Matthey Inspiring science, enhancing life

Realising the potential of MOFs through efficient scale-up

101010101

Adam Deacon

IWCCU 2021


16-02-2021

Agenda

JM

- Who is JM?
- Our priorities for MOF research
- MOF scale-up case study at JM

Aim to give an overview of MOF scale up work at JM.

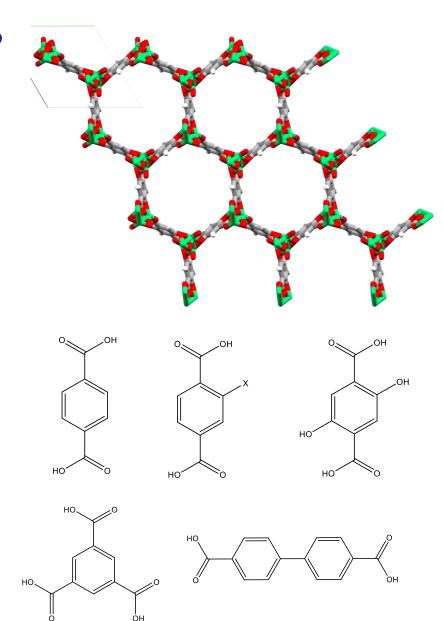
A speciality chemicals company and a world leader in sustainable technologies

Over **200 years of history** dating back to 1817 **R&D Focused**, with ~12% of employees working in R&D.

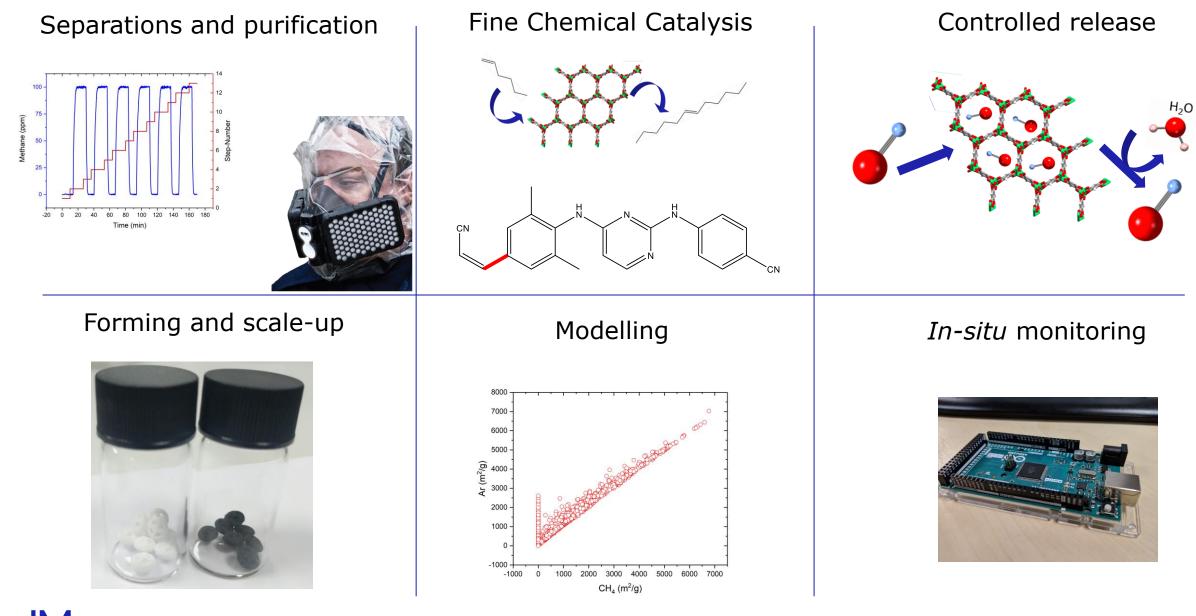
100+ PhDs funded by JM throughout world

We serve global markets

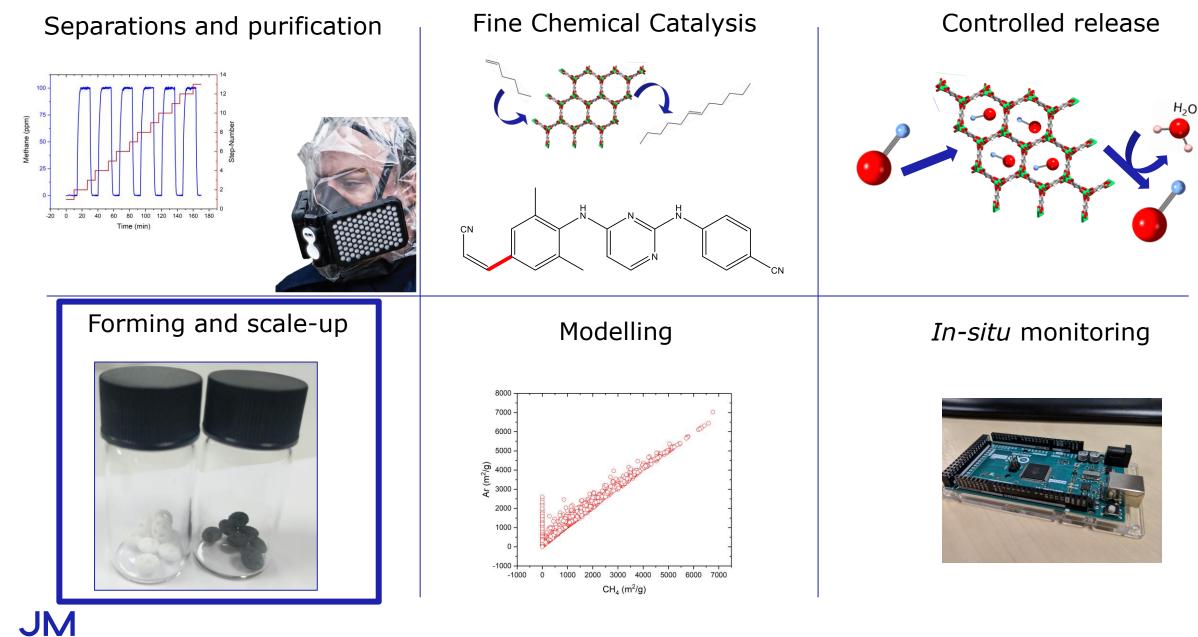
World class science and technology expertise



What are Metal-Organic Frameworks (MOFs)?


Functional hybrid materials consisting of metal nodes connected by organic linkers.

- High surface areas
 - 1 g of material possessing the same surface area as a football pitch
- Huge number of possible structures with \sim 70 k reported [1].
- Functionality arises from:
 - Porosity, pore structure, metal nodes & linker functional groups
- Certain MOFs are stable under harsh conditions
- Lots of academic interest over the last ~30 years
- Several products using MOFs now exist
 - TruPick[™] & ION-X


Need to develop large scale, cost effective scaleup routes to make these application a reality

Current key priorities in JM MOF work

Current key priorities in JM MOF work

8

Scale-up considerations

Chemical	
Circinica	

- Concentration
- Temperature
- Solvent

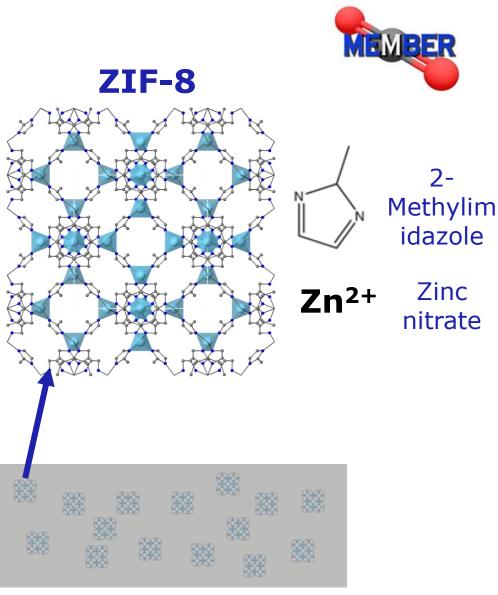
Physical

- Mixing
- Separation
- Washing
- Waste
- Product performance

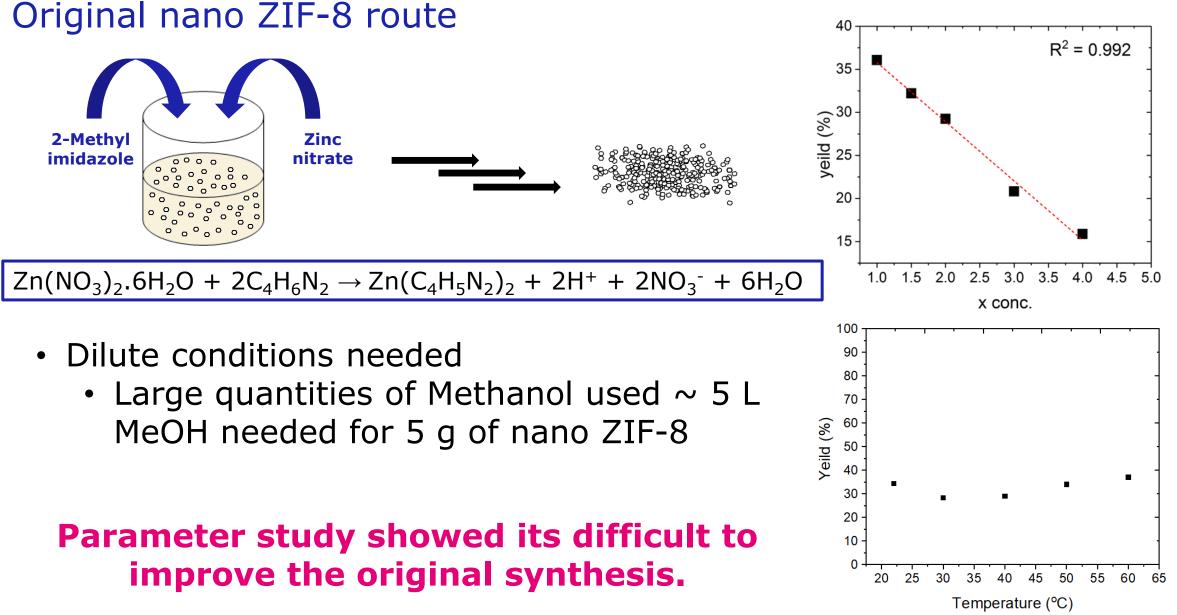
Solvent	Safety Score	Health Score	Env. Score	Ranking
H ₂ O	1	1	1	Recommended
EtOH	4	3	3	Recommended
MeOH	4	7	5	Problematic
THF	6	7	5	Problematic
DMF	3	9	5	Hazardous
Sulfolane	1	9	7	Hazardous

D. Prat, et al., Green Chem., 2016, 18, 288-296

Reduction of raw materials is key for MOF scale-up


Nano ZIF-8 scale-up case study

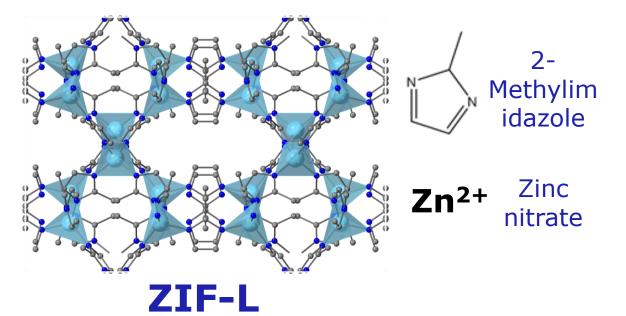
Properties


- Very high surface area \sim 1600 $m^2g^{\text{-1}}$
- High thermal stability stable 400 °C
- Pore aperture 3.4 Å

Application

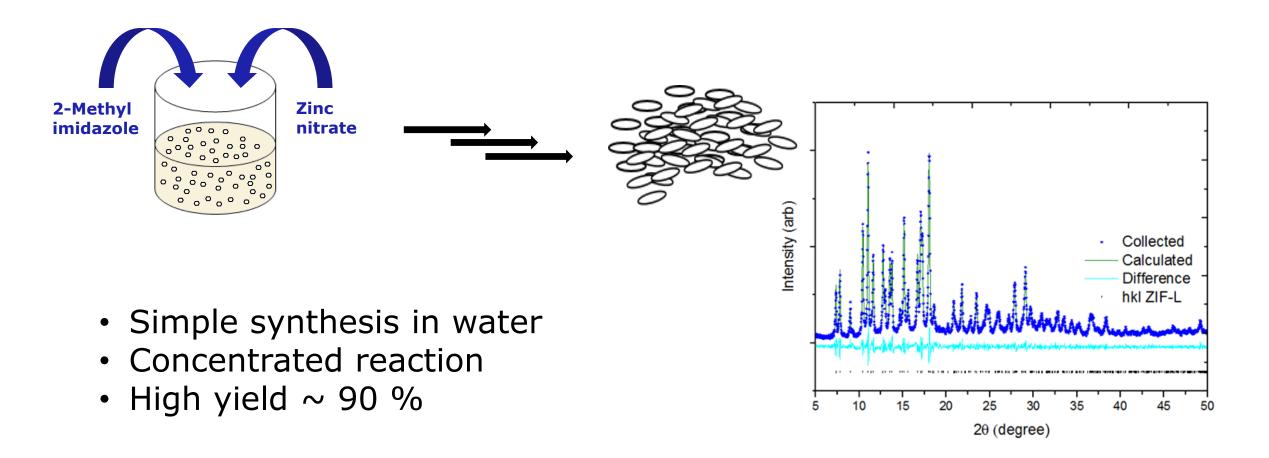
- Used in pre-combustion application separation of H_2/CO_2
- Nano sized needed for membrane applications

Mixed matrix membrane

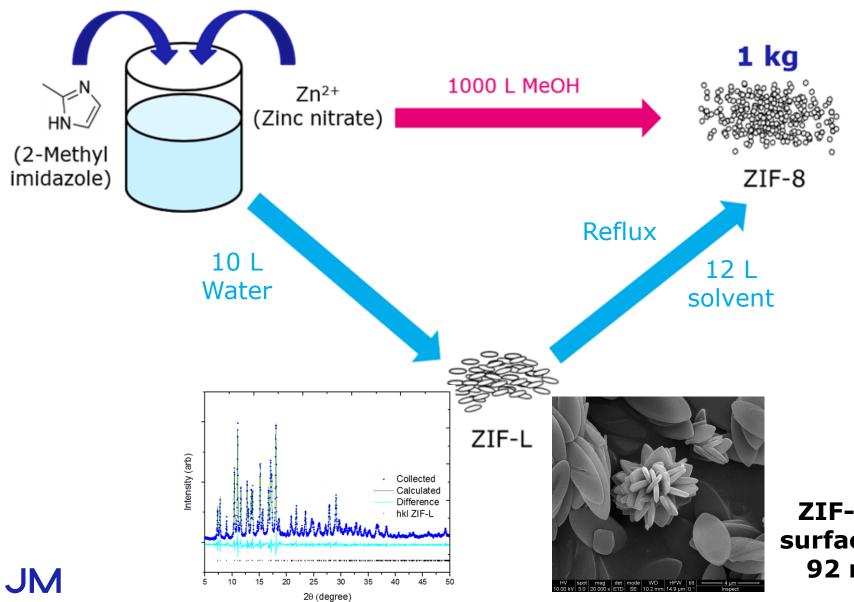


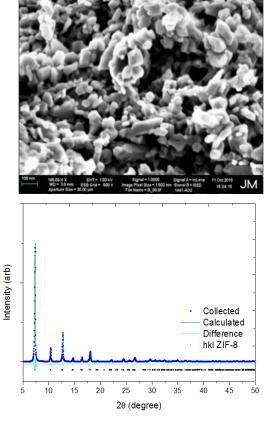
JM

ZIF-L as an alternative route to nano ZIF-8


Properties

- ZIF-L is a dense phase polymorph of ZIF-8
- Consists of same raw materials as ZIF-8
- 2D material connected by linker molecules – leaf shape
- Low porosity 92 m^2g^{-1}

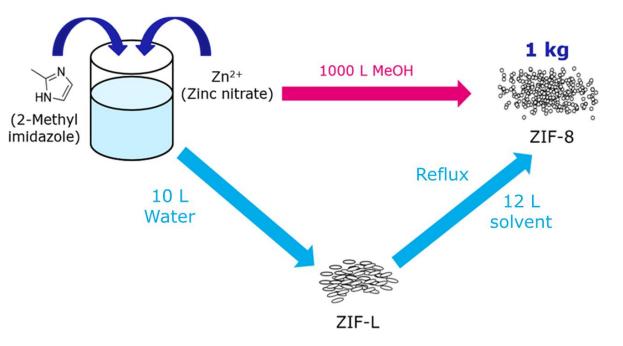




ZIF-L as an alternative route to nano ZIF-8

ZIF-L as an alternative route to nano ZIF-8

ZIF-8 BET surface area ~1600 m²g⁻¹


ZIF-L BET surface area 92 m²g⁻¹

Nano-ZIF-8 case study summary

Developed scalable route

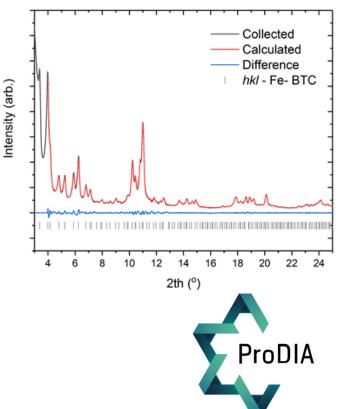
- Two order of magnitude solvent reduction
- Doubled overall all yield of nano-ZIF-8 synthesis
- Replaced methanol with nontoxic solvent
- Industrial scale concept for nano ZIF-8 designed.

7x reduction in cost to produce

Other scale-up examples **Scale-up: Fe-BTC**

- 60 L batch reaction vessel
- Washed in purpose built setup
- 15 kg MOF produced
- BET surface area ~1500 m²/g

Scale-up: CPO-27-Ni


• 10 kg CPO-27-Ni

JM

 Used in heat pump and desalination demonstrator unit in Egypt

- Reducing raw materials cost key to developing large scale synthesis
- Conventional scale-up methods not always valid
 - Chemistry of MOFs is important
- Commercial large scale synthesis of MOFs can be achieved with the right understanding

Acknowledgments

JM

Felicity Massingberd-Mundy

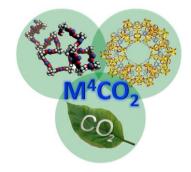
Timothy Johnson

Stephen Poulston

- New Applications Group Sonning
- Catalyst Research Group Chilton

UNIZAR

Joaquin Coronas


Magdalena Malankowska

European Commission

adam.deacon@matthey.com

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 608490 (project M⁴CO₂), grant agreement n° 685727 (project ProDIA) and under grant agreement No 760944 (MEMBER project)

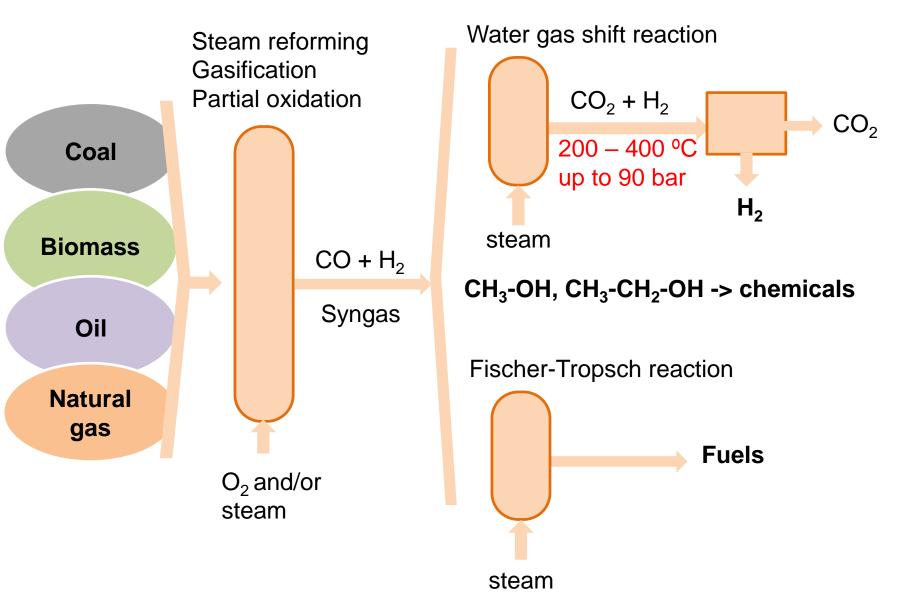
WE CAN DO SO MUCH TOGETHER

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/e - Eindhoven - 16-17 February 2021

PBI based mixed matrix hollow fiber

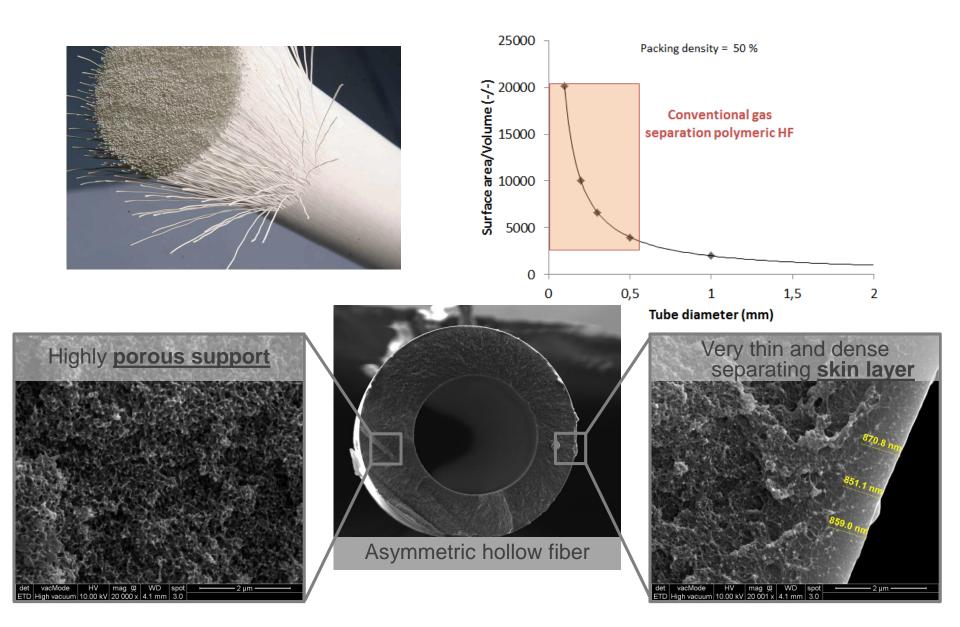
membranes for pre-combustion CO₂ capture

Dr Miren Etxeberria Benavides TECNALIA

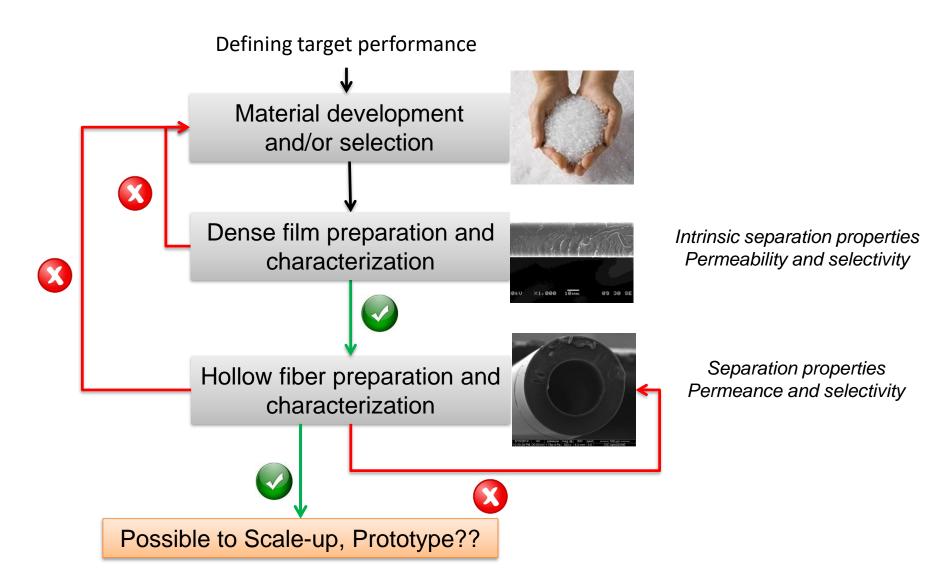


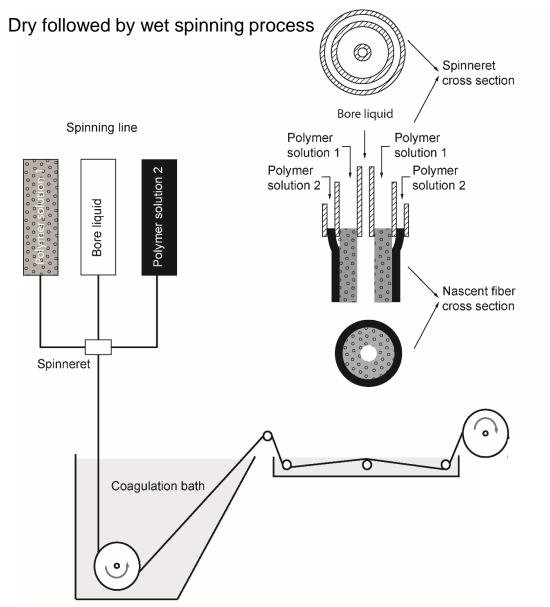
DSS2016.EU

Pre-combustion CO₂ capture



Chemical transformations before combustion = pre-combustion carbon capture

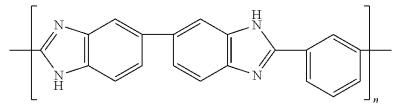

HOLLOW FIBER MEMBRANES



Membrane Development Strategy

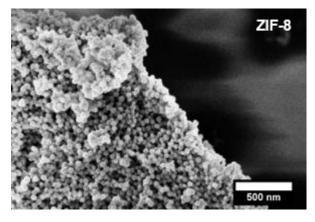
HOLLOW FIBER SPINNING

Process parameters Dope Composition Dope Flow rate **Bore Composition Bore Flow Rate** Spinning Temp **Coagulation Bath Temp** Air Gap height Take-up rate Room T Humidity

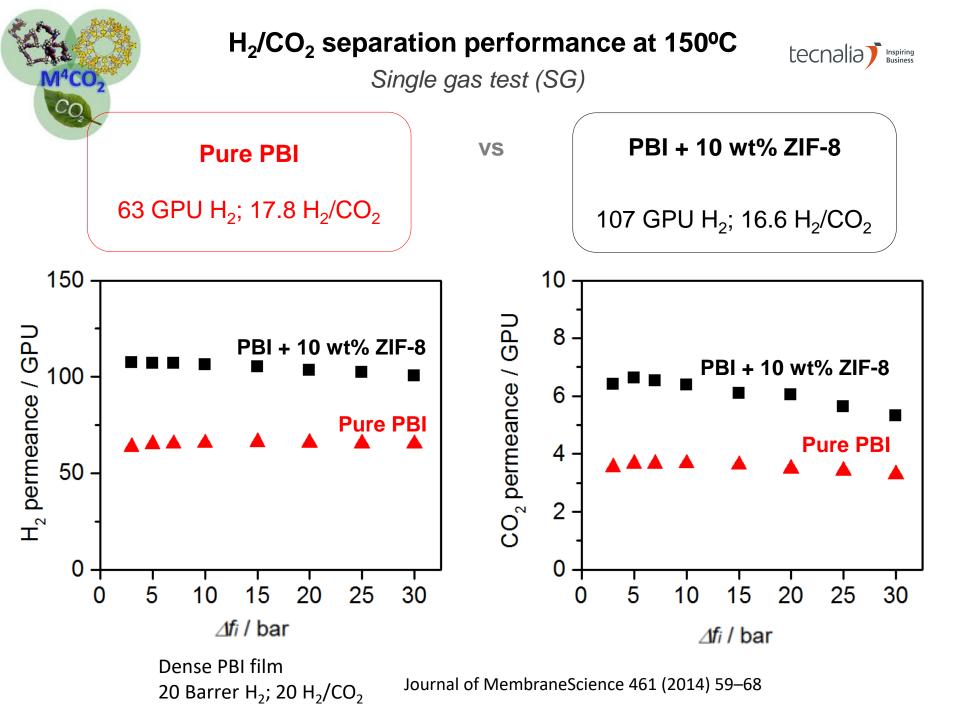


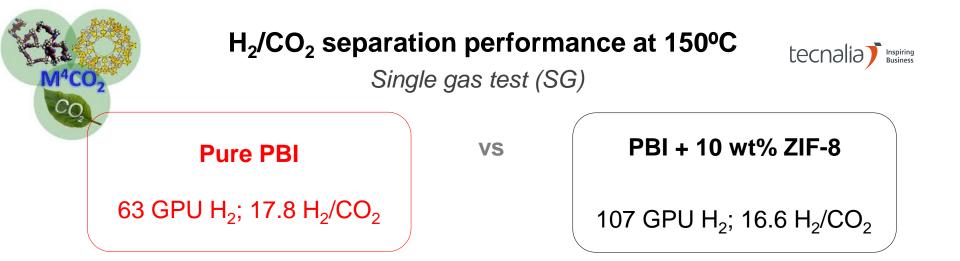
The M⁴CO₂ project aims at developing and prototyping Mixed Matrix Membranes based on highly engineered Metal organic frameworks and polymers (M4) for energy efficient CO₂ capture in power plants and other energy-intensive industries both for precombustion and post combustion applications

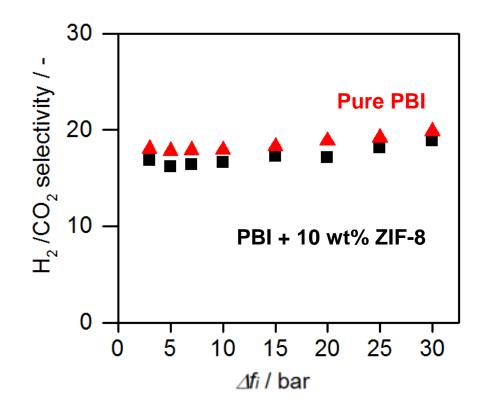
PBI Asymmetric hollow fiber

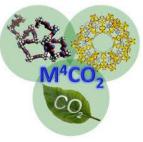


Filler: ZIF-8 powder

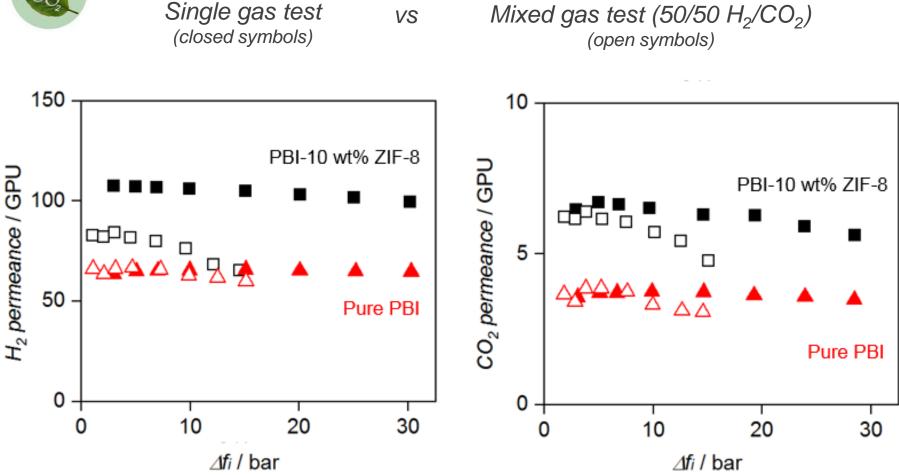

tecnalia Inspiring Business

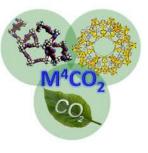



Particle size ~ <60 nm

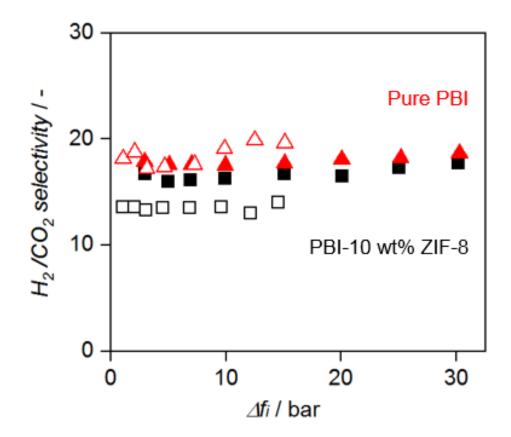

Kinetic diameter (Å)		
H ₂	2.89	
CO ₂	3.3	

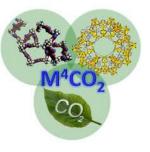
https://doi.org/10.1016/j.seppur.2019.116347





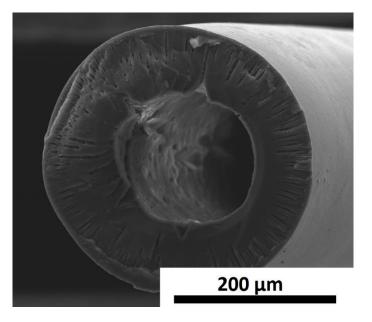
H₂/CO₂ separation performance at 150°C




H₂/CO₂ separation performance at 150°C

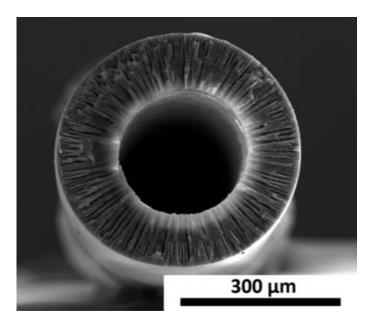
VS

Single gas test (closed symbols) Mixed gas test (50/50 H₂/CO₂) (open symbols)



M⁴CO₂ project

Pure PBI



Maximum take up rate: 20 m/min OD/ID: 370 μm / 160 μm

> Mechanical stability (Mandrel test)

PBI + 10 wt% ZIF-8

Maximum take up rate: 14 m/min

OD/ID: 470 μm / 250 μm

MEMBER project

The key objective of the MEMBER Project is the scale-up and manufacturing of advanced materials (membrane and sorbents) and their demostration at industrially relevant conditions in novel membrane based technologies that outperform current technologies for pre- and post-combustion CO_2 capture in power plants as well as H_2 generation with integrated CO_2 capture

Prototype A	

Pre-combustion CO₂ capture

MMM hollow fiber membranes

Prototype B

Post-combustion CO₂ capture

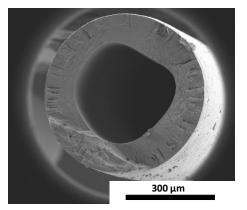
MMM hollow fiber membranes

Prototype C

Pure H₂ production with integrated CO₂ capture

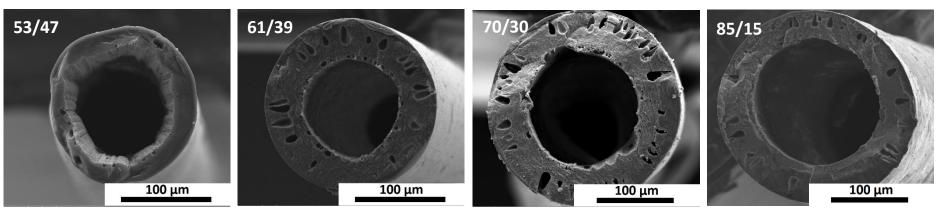
Pd-based membranes

MEMBER project


Objectives for PBI based membrane scaling up:

- Increase production rate (take-up rate)
- Decrease fiber dimensions
- Improve mechanical properties

MEMBER project PBI


Take up rate: 6 m/min

540 μm / 340 μm

PBI/PVP

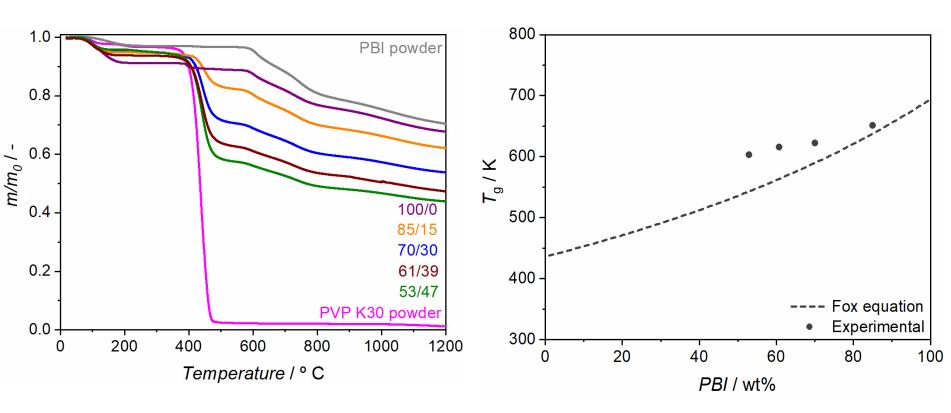
Take up rate: 25-50 m/min

175 μm / 115 μm

195 μm / 110 μm

275 μm / 165 μm

270 μm / 175 μm


tecnalia) Inspiring Business

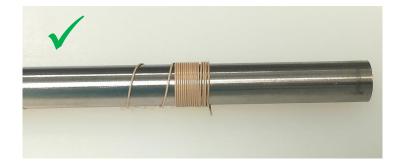
PBI/PVP blend fibers

TGA

Thermally stable up to ~340 °C

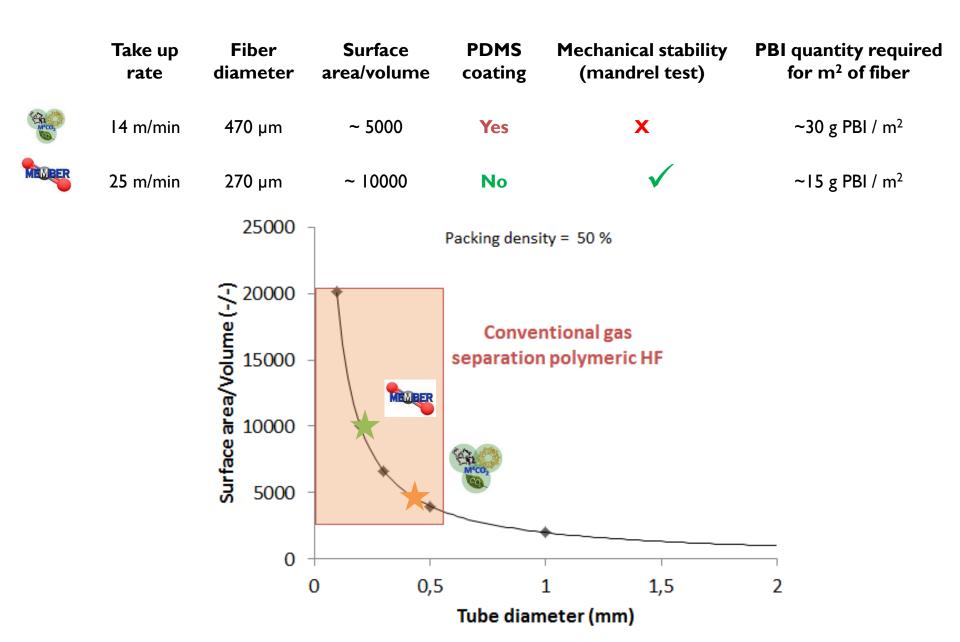
Hydrogen bonds between the N-H group of PBI and the C=O group of PVP

DSC


H₂/CO₂ separation performance at 150°C

Mixed gas test (50/50 H_2/CO_2)

	H ₂ Permeance (GPU)	H ₂ /CO ₂ Selectivity (-)	OD/ID (µm)	Take up rate (m/min)	Defect heling treatment (PDMS)
PBI/PVP	56	16.6	275/165	25	Νο
10 wt% ZIF-8	121	10.2	290/175	25	Yes
5 wt% ZIF-8	31	17	270/175	25	Νο

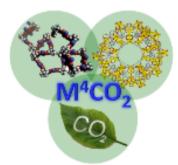

Mechanical stability (Mandrel test)

M⁴CO₂ project vs MEMBER project

Inspiring Business

tecnalia

Conclusions


- PBI/ZIF-8 mixed matrix hollow fiber membranes:
 - ZIF-8 incorporation into the PBI polymer matrix strongly influences gas transport, specifically in mixed gas permeation
 - Improvement of fiber performance for H₂/CO₂ separation with filler addition at 150 °C is compromised at high operating feed pressures (30 bar)
- PBI/PVP blend asymmetric hollow fiber membranes
 - PVP addition: as spun fiber elasticity increases, industrially relevant take up rate values (25-50 m/min)
 - Mechanically robust and small diameter (< 300 μm) fibers have been successfully prepared
 - Blend fibers are thermally stable up to ~340 °C

Acknowledgement

This research has received funding from the European Union's Seventh Framework Programme (FP/2007-2013) under grant agreement number 608490 and Horizon 2020 research and innovation programme (H2020) under grant agreement n° 760944.

Thank you very much for your attention!

Questions

Visit our blog: http://blogs.tecnalia.com/inspiring-blog/

www.tecnalia.com

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/e - Eindhoven - 16-17 February 2021

Session 1B (chairperson Camel Makhloufi)

11:15-11:35 Dr. M. Noponen and Dr. X. Sun - High temperature electrolysis and co-electrolysis

11:35-11:55 Prof. J Serra - Direct electrocatalytic conversion of CO₂ into chemical energy carriers in a co-ionic membrane reactor

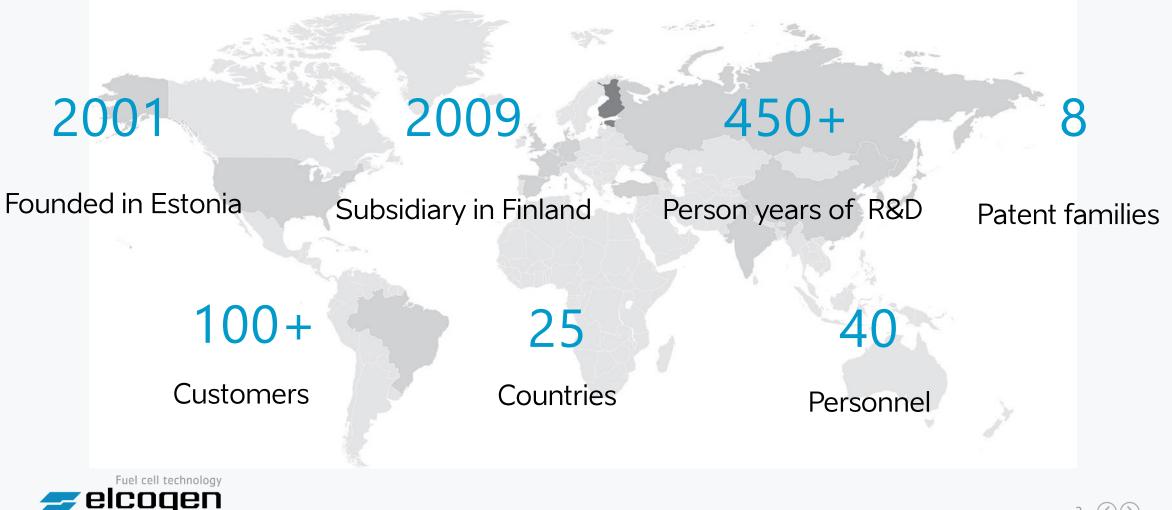
11:55-12:15 Dr. V. Middelkoop - CO2Fokus at a glance: CO₂ utilisation focused on DME production, via 3D printed reactor and solid oxide cell based technologies

12:15-12:35 Dr. M. Tsampas - The KEROGREEN CO, plasma route to CO and alternative fuels

12:35-12:55 Dr. G. Bonura - 3D-printing in catalysis: Development of efficient hybrid systems for the direct hydrogenation of CO₂ to DME

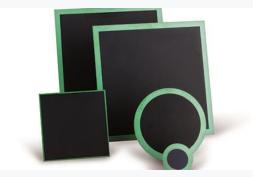
ORGANIZED BY

HIGH TEMPERATURE ELECTROLYSIS AND CO-ELECTROLYSIS


Matti Noponen, Timo Lehtinen (Elcogen) Xiufu Sun (DTU)

PRESENTATION AGENDA

- Who We Are
- The Elcogen advantages
- C2FUEL project
- Acknowledgements

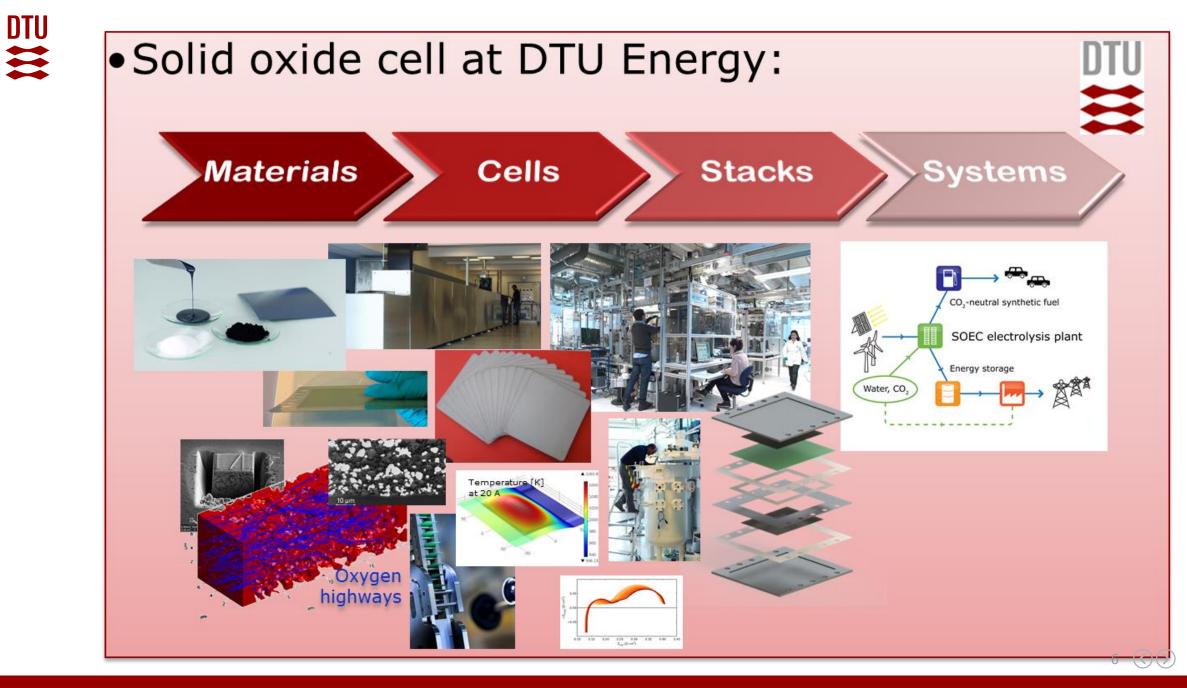

ELCOGEN AT A GLANCE

ELCOGEN PRODUCT FAMILIES

- World-leading planar, ceramic, anodesupported cells (ASC). Patent-protected
- Low operating temperature of 650°C enables longer lifetimes
- Cells and stacks made with low cost raw materials and designed for mass manufacturing
- Low cost and uniquely designed SOCs drive major cost reductions at the system level

elcoCell

<mark>elco</mark>Stack

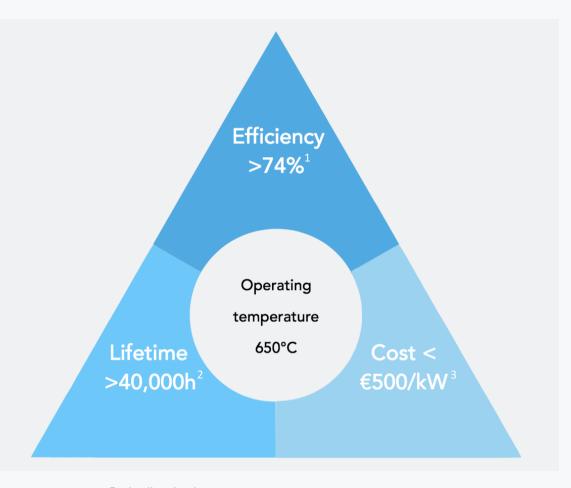

- Sustainable technologies for energy conversion and storage
- 230 researchers, technicians and PhD students
- > Research spanning from fundamental investigations to component and prototype manufacture
- Focus on industrial collaboration and industrially relevant processes

Solid oxide cells Polymer exchange membrane cells **Batteries** Gas separation

Solar cells

SINGLE TECHNOLOGY – MULTIPLE APPLICATIONS

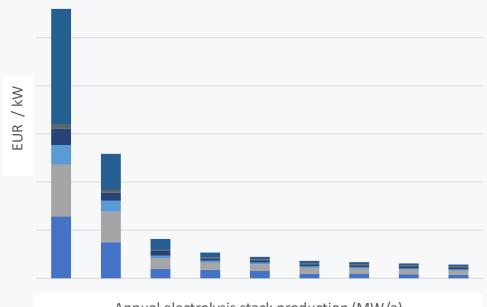
Residential: Single & Multi-Family Commercial & Industrial CHP


Long-range Transportation

Electrolysers for Energy Storage and Power to Fuel

THE ELCOGEN ADVANTAGE

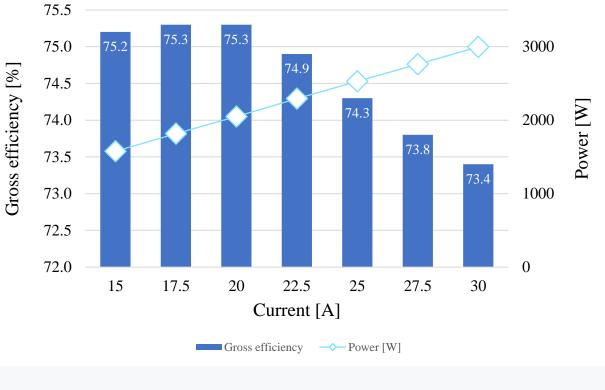
Elcogen is the SOC technology best positioned to address the 3 critical market barriers of Efficiency, Lifetime and Cost


Note: The targets in this chart apply to Elcogen stacks.

Note: ¹Elcogen's leading stack electrical efficiency of 74% (in fuel cell mode) has been measured with a 119-cell, commercial-grade 3kW stack using natural gas. ²Durability of stack design has been proven through long-term tests reaching 20,000 hours, indicating a total lifetime of 40,000 hours for the stack. ³Assumes a 1GW/year production capacity.

ELCOGEN ADVANTAGE – COST

- Elcogen's stack cost analysed closely with the manufacturing partners
- Production volume is the main driver in cost reduction
- Elcogen has started a factory project with the aim to introduce 50 MW/a production capacity

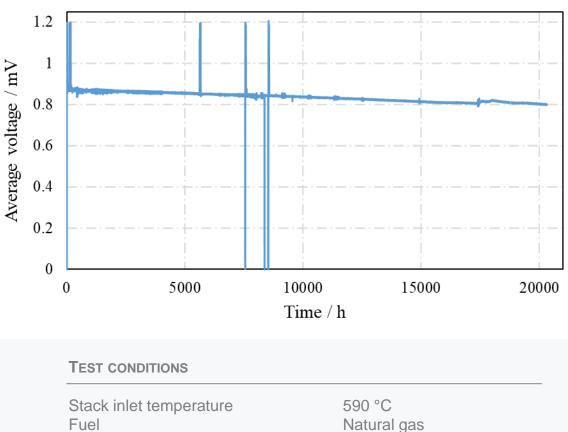


Annual electrolysis stack production (MW/a)

THE ELCOGEN ADVANTAGE – EFFICIENCY (FUEL CELL)

- Ultra high energy conversion efficiencies are achieved with commercial E3000 stacks
- Elcogen stacks exceed 75 % efficiencies already at 600 °C (LHV, NG)
- The efficiency is enabled by unique, patent protected unit cell and stack designs

TEST CONDITIONS

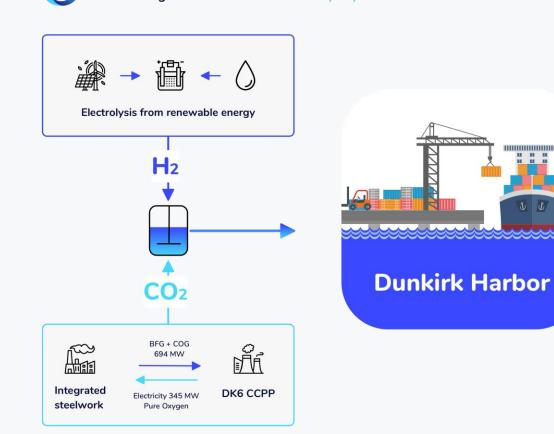

Stack inlet temperature Fuel Anode off gas recycle (sim.) Air flow 590 °C Natural gas 70 % 330 NI/min

THE ELCOGEN ADVANTAGE – LIFETIME (FUEL CELL)

- Stack lifetime testing conducted in a real fuel cell systems
- Ongoing tests exceeding 20 000 hours
- Degradation rate linear with constant slope of 15 mΩ.cm² / 1000 h (i.e. 0.4 % / 1000 h)
- By assuming linear degradation, Elcogen stack technology has 40 000 hours lifetime expectation

Stack inlet temperature	590 °C		
Fuel	Natural gas		
Fuel utilization	60 %		
Steam-to-carbon ratio	2.2		
Oxygen utilization	20 %		
		11	$\langle \rangle \rangle$

A EUROPEAN RESEARCH & INNOVATION PROJECT


- This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 838014
- The project started on July 1st 2019, and will last 4 years (until 2023)
- Elcogen role is to provide high temperature steam electrolysis technology for the project (cell, stack and system)
- DTU role is to conduct cell and stack characterization and stack modelling in the project

C2FUEL OVERALL TARGET: 2.4 MILLION TCO2 AVOIDED PER

C2FUEL Project Overall target 2.4 million tCO₂ avoided per year

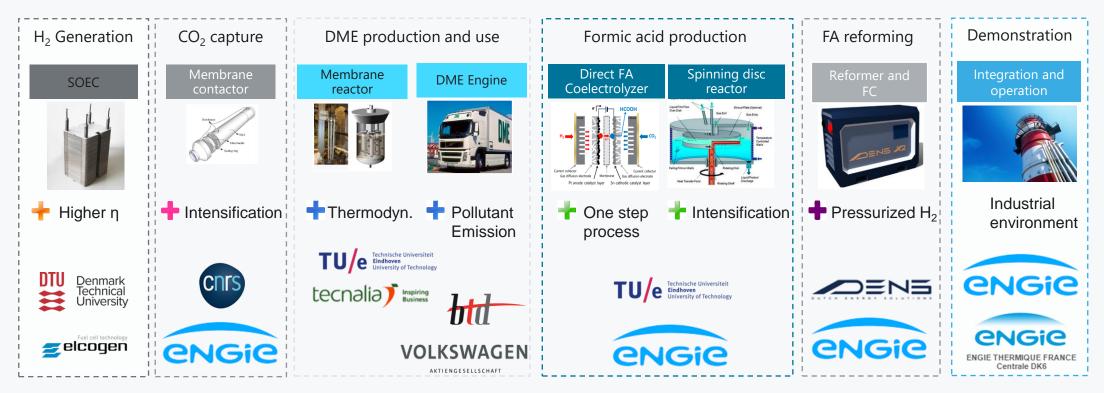
Formic acid as Hydrogen carrier

Decreasing the electricity footprint during boat charging on docks

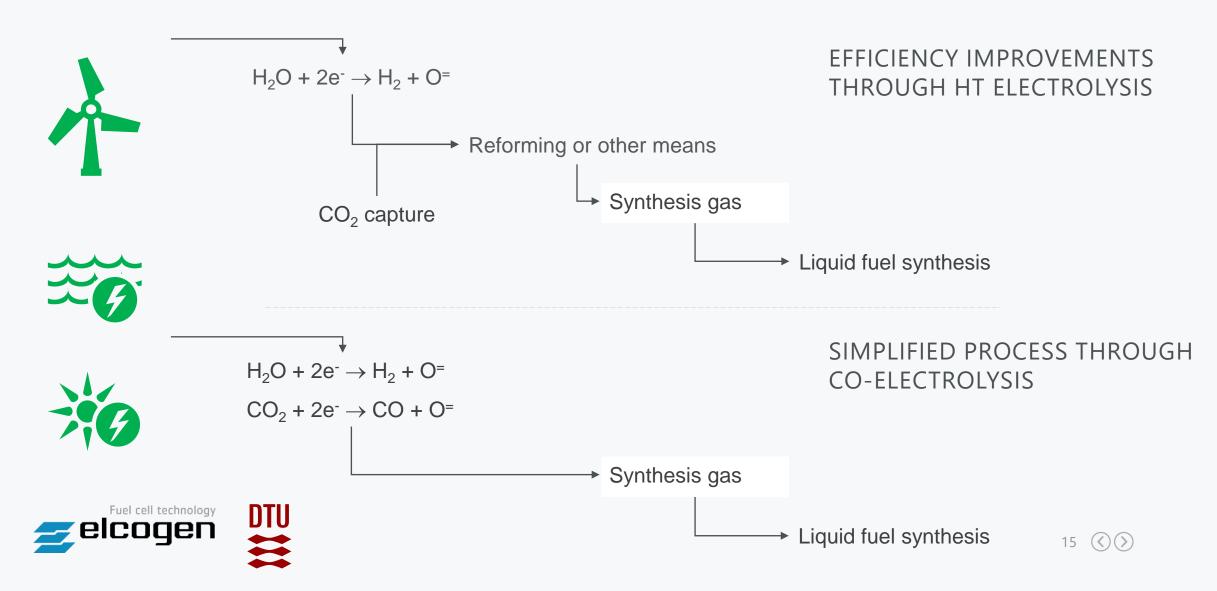
C2FUEL Output

2,4 million ton of FA100 000 ton of green hydrogen1,8 TWh of green electricitySeasonal storage using 3.6 TWh of renewable electricity

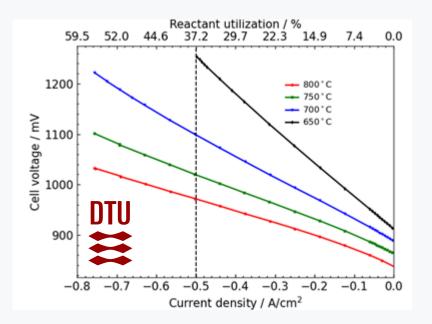
Dimethylether as Maritime and truck fuel Displacing fossil fuel emission from power plant and decreasing harbor mobility footprint


C2FUEL Output

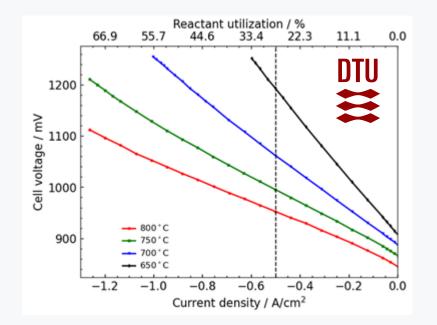
1,2 million ton of DME320 000 ton of green H₂ produced using11 TWh of renewable electricity


FROM TRL 3 TO TRL 6 ON INNOVATIVE TECHNOLOGIES

 C2FUEL partnership covers the whole value chain of conversion of CO2 for carbon-captured fuel production.



STEAM ELECTROLYSIS VS CO-ELECTROLYSIS

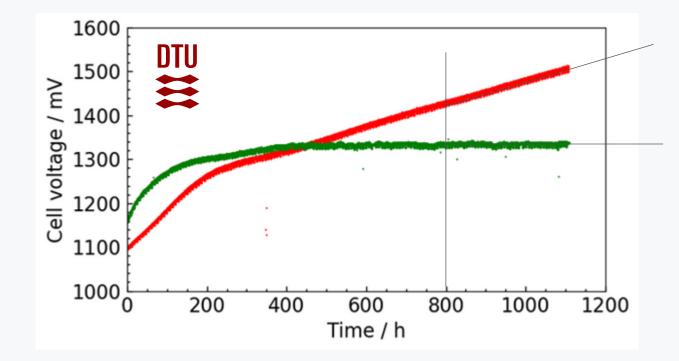


DETAILED CHARACTERIZATION OF UNIT CELLS

Steam electrolysis mode

Cathode flow rate	13.4 l/h
Inlet composition $[H_2O, CO_2, H_2]$	90 %, 0 %, 10 %

Co-electrolysis mode


Cathode flow rate	10 l/h
Inlet composition $[H_2O, CO_2, H_2]$	45 %, 45 %, 10 %

Specific energy consumption below 3.06 kWh/Nm³ (1.28 V) at relevant current densities Outlet composition in equilibrium determined by pressure, inlet gas composition, and temperature, current

DEGRADATION TESTING AND LIFETIME LIMITING FACTORS

- Major focus on understanding lifetime limiting factors through long term experiments
- Example shows the importance for conducting the lifetime testing at different operation conditions
 - Test with different reactant utilizations
 - Degradation rate is changed from virtually zero (1 mOhm.cm²/kh) to rapid escalation (510 mOhm.cm²/kh)

SIMPLIFIED PI-DIAGRAM OF ELECTROLYSER DEMONSTRATOR

Electrolyser subsystem Nitrogen Hydrogen Heater SOE stack operation environment aimed to be designed as mild as possible Water Water HEX SOEC Evaporator treatment Pressure level in stack as close to Heater atmospheric as possible, pressurizing through diaphragm compressor Exhaust Drver Flow rates with large variation window Water drain HEX Heat management via multiple mechanisms Air Hydrogen circulated back to stack inlet Compressor subsystem Water purification process highlighted in Recycle the process valve To DME Compressor Desiccant Compressor Buffer tank 2nd stage 1st stage production dryer Fuel cell technology Water drain 18 🔇 🔊

ELECTROLYSER DEMONSTRATOR

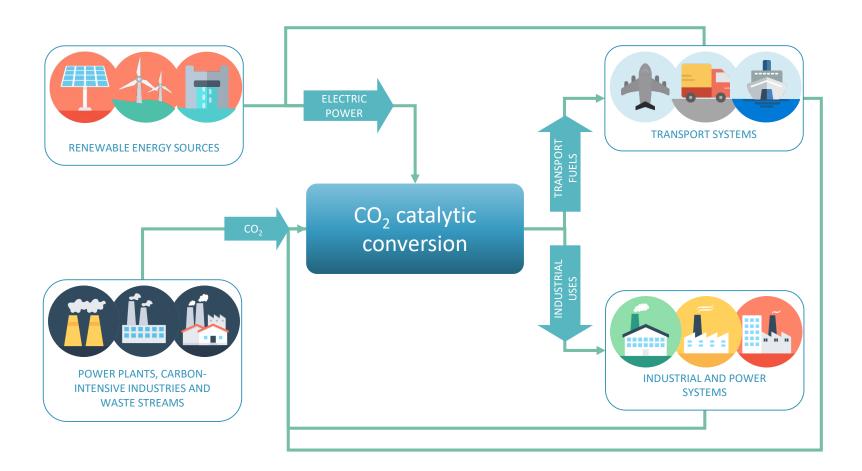
- The electrolyser unit and compression system are installed into containers
- Containers are designed modular and can be operated independently
- Electrolysis system designed to produce 1Nm³/h of atmospheric pressure hydrogen from Type I water
- Compressor container system compresses produced hydrogen to 40 bar and dries it to -60°C dew point (ref. atm. pressure) equals to ~19 ppmVOL
- Containers will be installed outdoors at the DK6 site with other bricks of the C2FUEL project demonstration system

Layouts of compressor (left) and electrolyser (right) containers

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 838014.

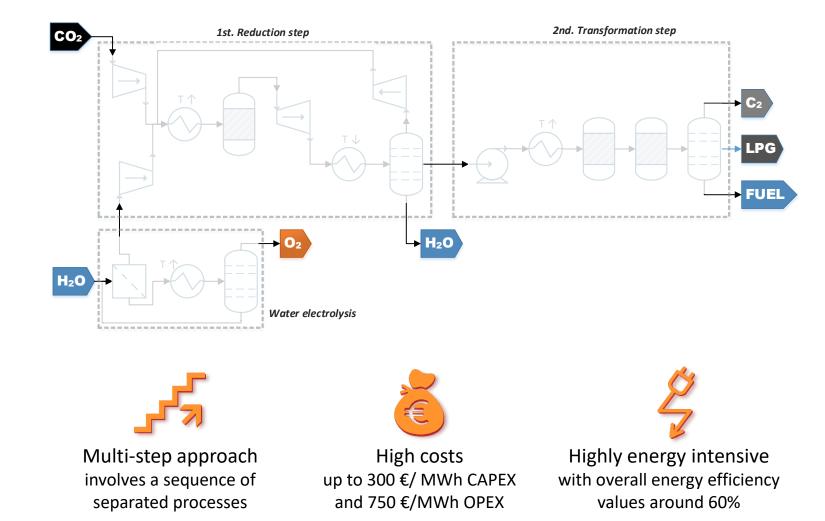
THANK YOU FOR YOUR ATTENTION!

Direct electrocatalytic conversion of CO₂ into chemical energy carriers in a co-ionic membrane reactor José M. Serra



This project has received European Union's Horizon 2020 research and innovation funding under grant agreement № 838077.

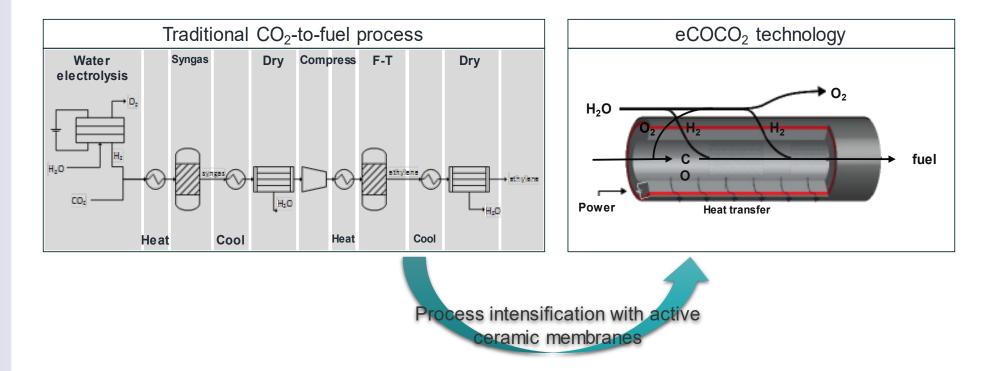
CO₂ catalytic conversion combined solution for energy storage and carbon footprint reduction



Sustainable Process Industry through Resource and Energy Efficiency

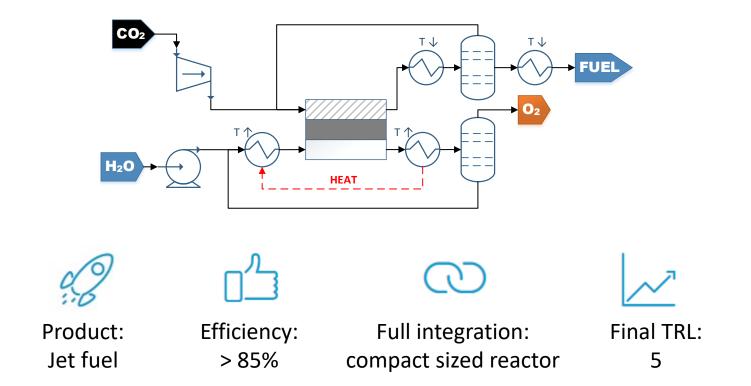
Context

Current CO₂-to-fuel technologies


3

Single-step electrolysis and one-pot catalytic conversion

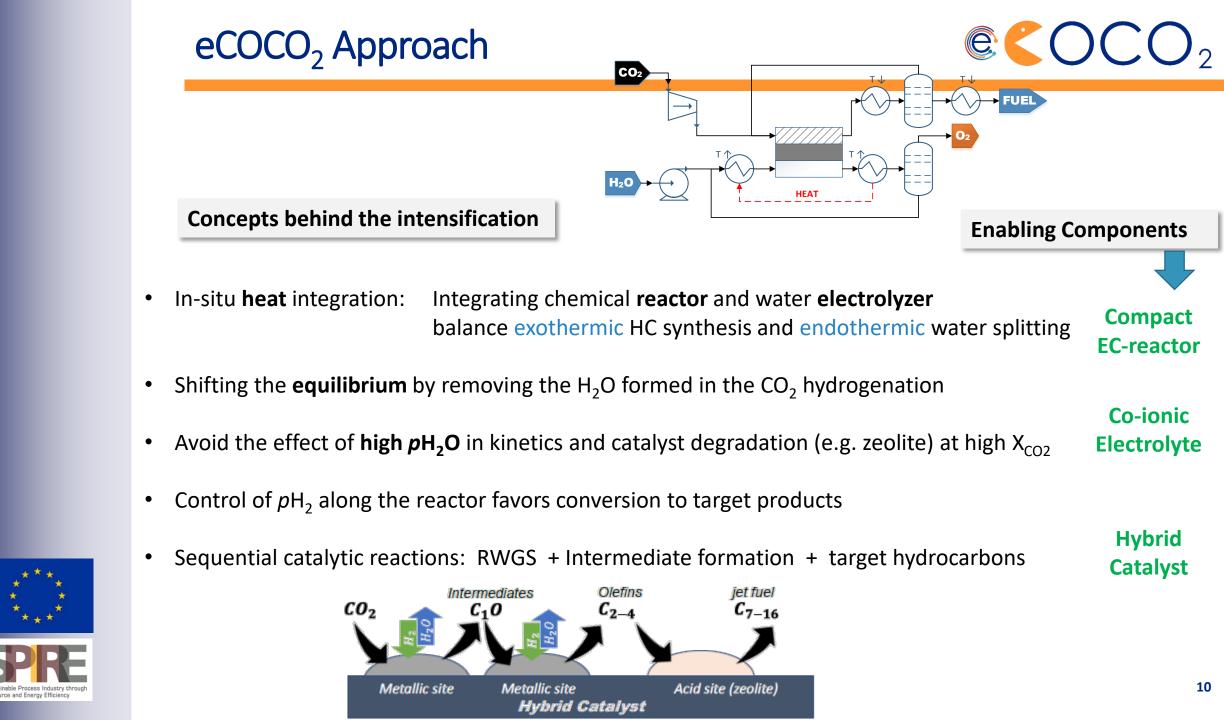
Membrane Reactor for the direct electrocatalytic conversion of CO₂ and steam into hydrocarbons



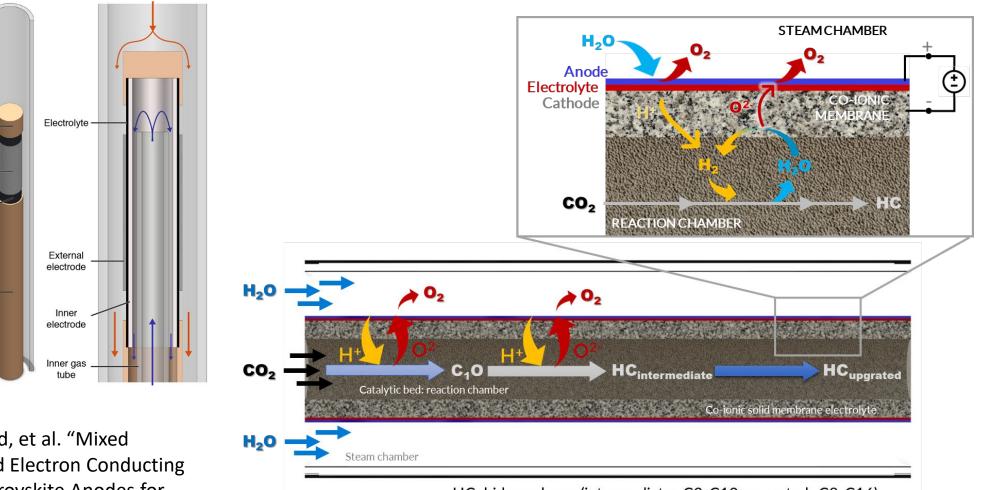
Scientific background and techno-economics: Malerød-Fjeld et al., **Nature Energy 2017**, Thermoelectrochemical production of compressed hydrogen from methane with near-zero energy loss, https://www.nature.com/articles/s41560-017-0029-4

(Intensified) Single-step electrolysis and one-pot catalytic conversion

Set-up a technology for conversion of CO_2 , using renewable electricity and water steam, to carbonneutral jet fuel, at high energy efficiency, very high CO_2 conversion rate and moderate-to-low cost.



Single-step electrolysis and one-pot catalytic conversion



"Electrifying chemistry with protonic cells", Nature Energy 4 (3) (2019) 178-179

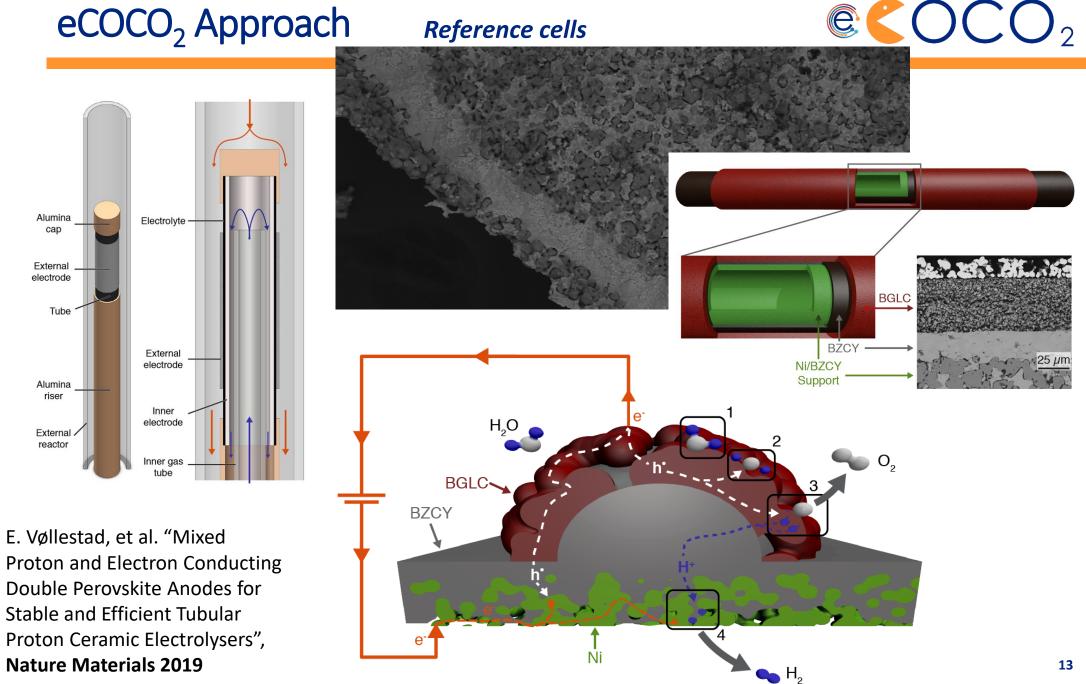
eCOCO₂ Approach

HC: hidrocarbons (intermediate: C2-C10; upgrated: C8-C16)

E. Vøllestad, et al. "Mixed Proton and Electron Conducting Double Perovskite Anodes for Stable and Efficient Tubular Proton Ceramic Electrolysers", **Nature Materials 2019**

Alumina

cap

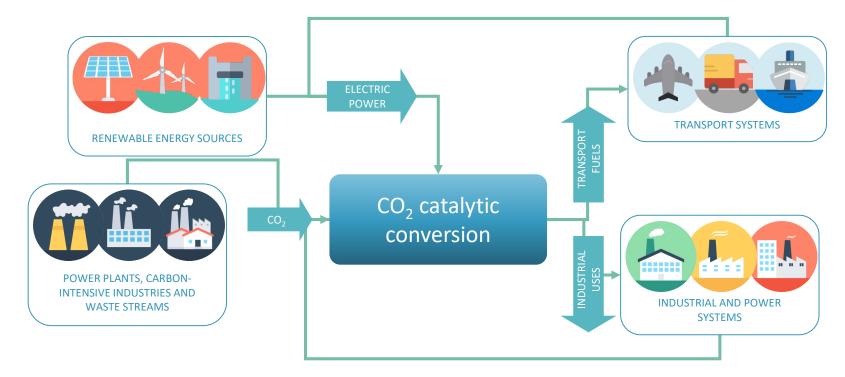

External electrode

Tube

Alumina

riser

External reactor

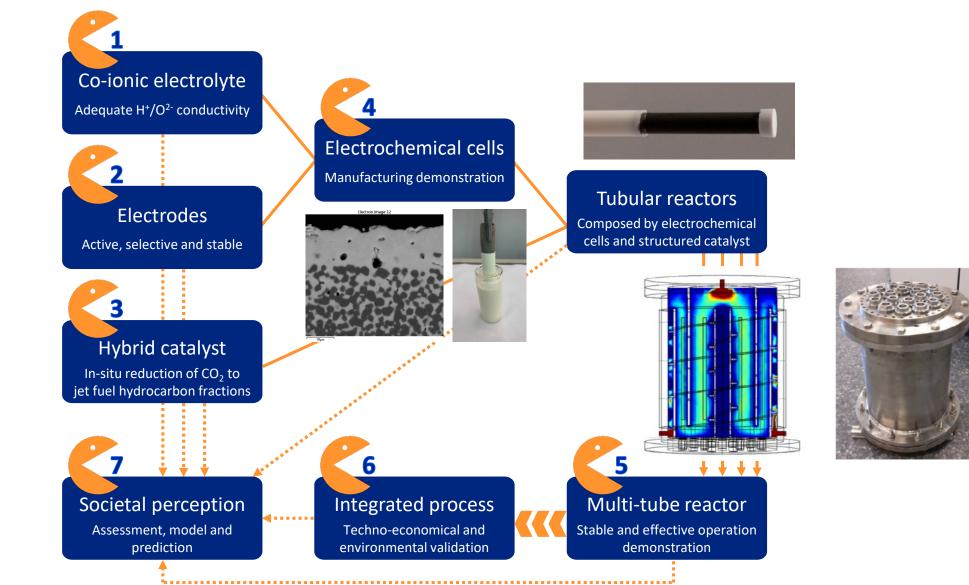


Proton and Electron Conducting **Double Perovskite Anodes for** Stable and Efficient Tubular Proton Ceramic Electrolysers", **Nature Materials 2019**

Context

Challenges

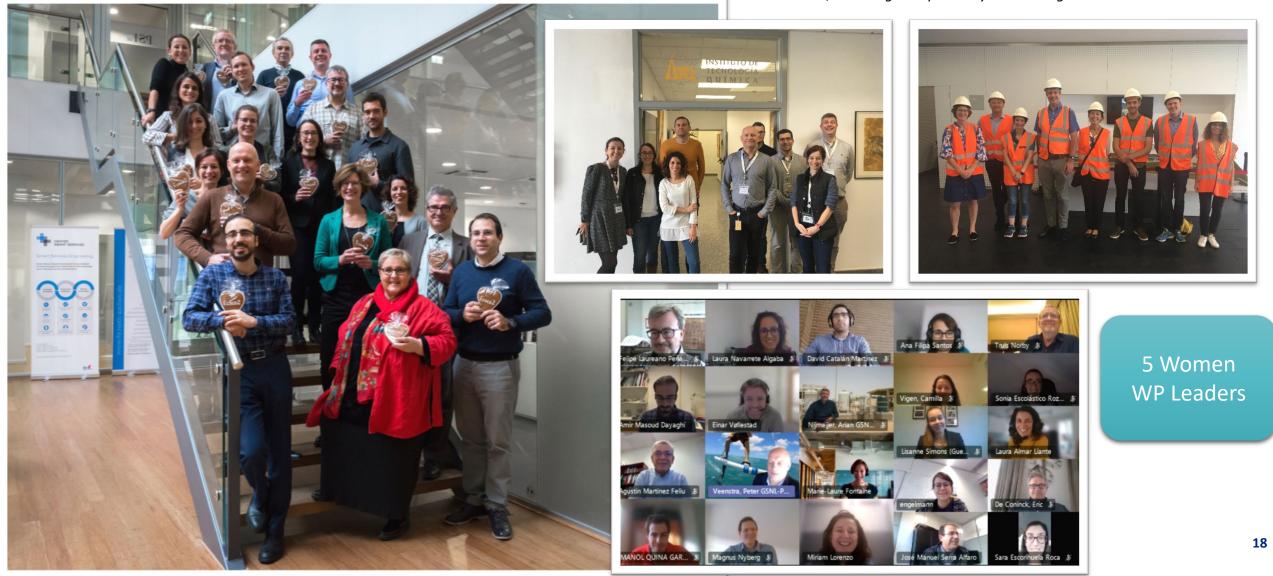
- Couple Catalysis and Electrochemical Cell operation conditions
- Manufacture of large cells with novel components
- CO₂ streams: composition, conditions, capture&cleaning costs...
- Integration in industrial processes: TEA
- Social perception and acceptance



ustainable Process Industry through esource and Energy Efficiency

Objectives

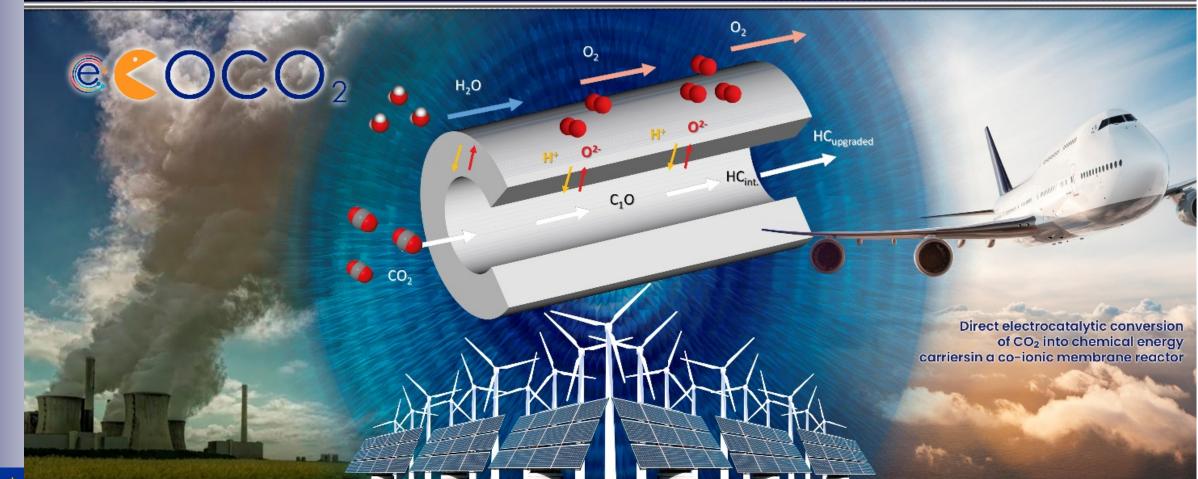
The consortium is formed by well balance of reference research and academic institutions:



Equal opportunities between men and women in the implementation of the action are promoted. Gender balance at all levels of personnel assigned to the action, including at supervisory and managerial level.

Barriers

• Economic sustainability of the process


- Associated costs, including capital costs and operating costs (mainly energy consumption), and the expected savings and revenues.
- Dependence on upstream technologies
- Availability of required associated infrastructure
- Public perception and acceptance of the technology
- Regulatory barriers

Dissemination and Communication

stainable Process Industry throu

esource and Energy Efficiency

- ✓ Social networks
- ✓ Visual identity

- ✓ Press release and radio
- ✓ Project flyer
- ✓ Project video

This project has received European Union's Horizon 2020 research and innovation funding under grant agreement Nº 838077.

INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILISATION

CO₂ utilisation focused on market relevant dimethyl ether production, via 3D printed reactor and solid oxide cell based technologies

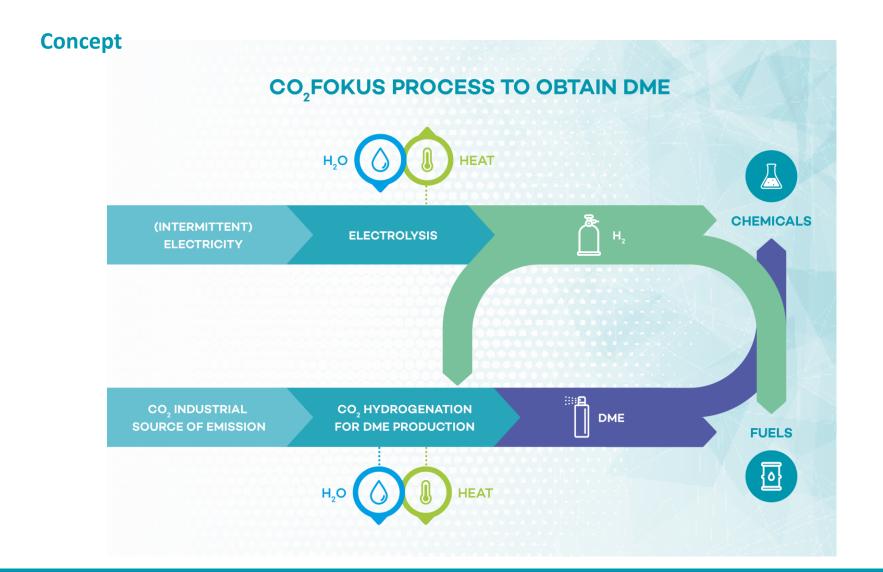
> Vesna Middelkoop 16 February 2021

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

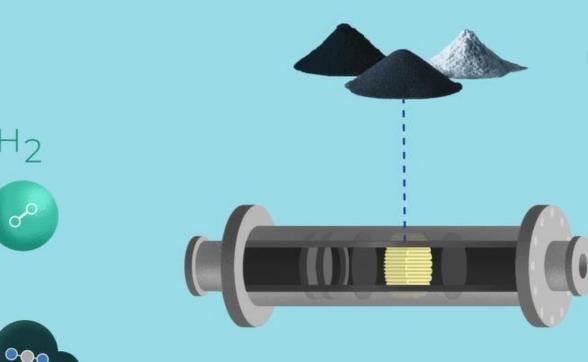
info@co2fokus.eu

CO₂Fokus facts and figures

CO₂Fokus at a glance


The project will develop a cutting-edge technology to directly convert industrial CO2 into DME (Dimethyl Ether), by:

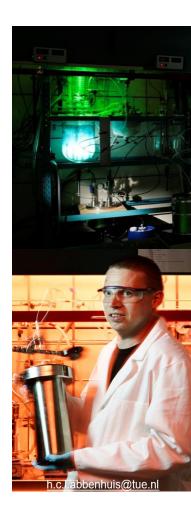
- employing innovative 3D printed multichannel catalytic reactors and solid oxide electrolyser cells
- integrating and testing them in an industrial environment of large industrial CO2 point sources

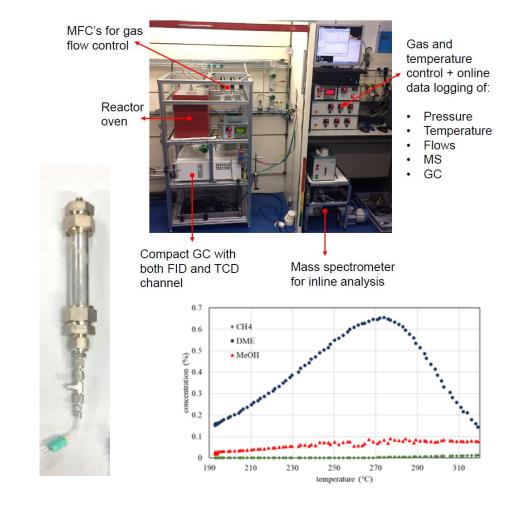


The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

Catalyst formulation and single tube catalyst screening for DME production

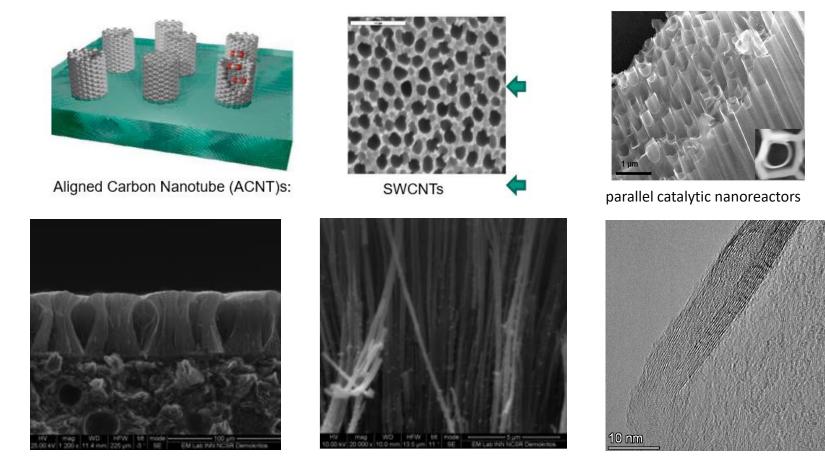
high selectivity and conversion for the direct hydrogenation of CO₂ to DME


multi-channel catalytic reactor with highly favourable heat and mass transfer properties and a low pressure drop



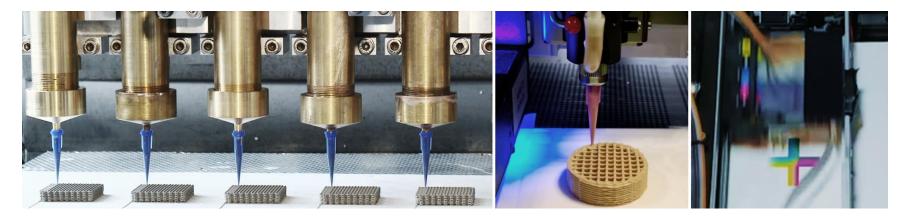
Catalyst formulation and single tube catalyst screening for DME production

info@co2fokus.eu

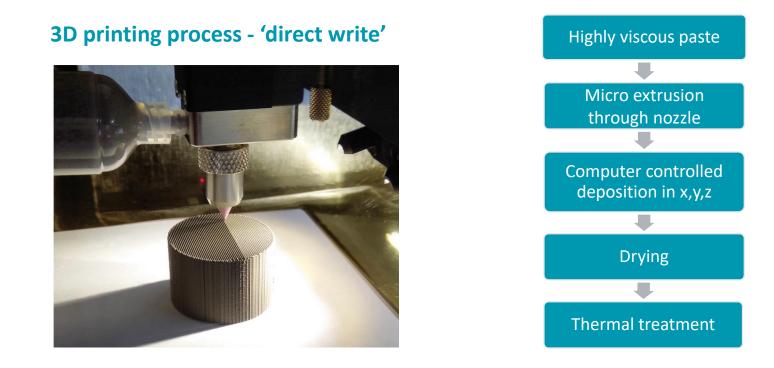


The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

Single tube catalytic CNT membrane reactors for DME production


Tailored nano pore size by Atomic Layer Deposition (ALD)

Why do 3D printing of catalysts and adsorbents?


Major advantages of 'direct write' (structuring reactors into multi-channel, multi-layer architectures) is that tailor-made multi-modal devices allow for:

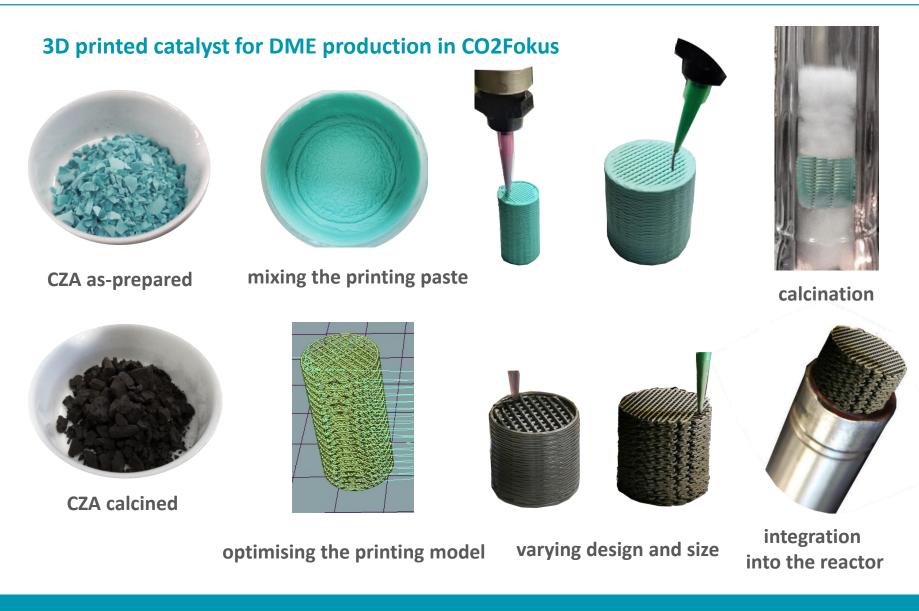
- precise and uniform distribution of active material over a high surface area
- highly adaptable and well-controlled design for optimal flow pathways
- low pressure drop
- improved mass- and heat-transfer
- easy (in-situ) regeneration and cost-effective product removal
- overall greatly improved productivity per cubic meter of reactor volume

Offers bespoke patterning of all-in-one structures in a variety of materials:

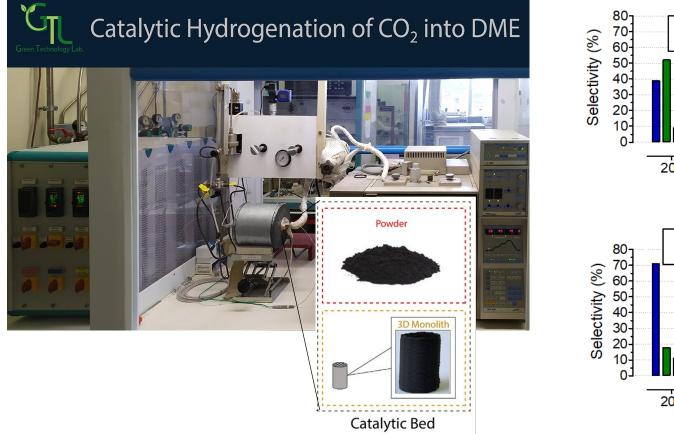
- oxide ceramics (e.g. Al₂O₃, SiO₂, ZrO₂, CeO₂, mixed metal oxides, nanocomposites)
- metals (e.g. titanium, copper, aluminium, silver) and alloys (e.g. stainless steel)
- non-oxide ceramics (e.g. silicon carbide, carbon, boron nitrate)
- other functional materials: zeolites, polymers, MOFs, graphene oxide

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

3D printed catalyst, adsorbents and reactor components at a glance



The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061



Catalyst 1

DME

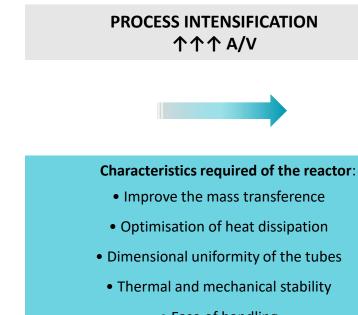
MeOH

Single tube catalyst testing for DME production

CO 200 2<u>2</u>0 240 260 Temperature (°C) Catalyst 2 DME MeOH CO 200 220 240 260 Temperature (°C)

For more details see further: Session 1B, Dr. G. Bonura

3D-printing in catalysis: Development of efficient hybrid systems for the direct hydrogenation of CO₂ to DME



The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

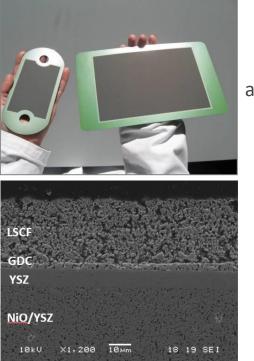
Multi-channel millireactors TRL4-TRL6

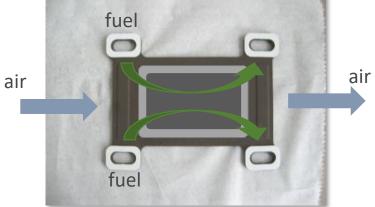
• Ease of handling

16 Millichannel Reactor				
Space velocity, NL/kg _{cat} /h	T, ⁰C	CO ₂ Conversion, %	DME Selectivity, %	DME Yield, %
	280	12.1	31.0	3.7

For more details see further: Session 3A, Dr. S. Perez Process intensification in the conversion of CO2 with a milli-structured reactor

www.co2fokus.eu





The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

Solid oxide electrolyser cell and design, development and build up for H2 production

cell design

performances	unit	nominal
Conversion	%	60
H ₂ Production	NI	0.30-0.32
Stack power DC	kW	4.5
Thermal cycling	-	100-200

- Thin (ca. 250 μm) anode support with GDC/LSCF cathode
- Low cost state-of-the-art materials
- High mechanical strength and reliability

Process design of CO2Fokus prototype demonstration units and on site integration

Reactor and SOE units will be integrated into existing carbonintensive industrial facilities for on-site recycling of CO₂

www.co2fokus.eu

Conclusions

Advance beyond the state-of-the-art

- Effective controlled deposition of active catalyst particles
- Reactor design: large surface to volume ratio and controlled macrostructure; millichannel reactors offer enhanced mass and heat transfer and 10-20% increase in reaction performance
- Integration and operation at Petkim's facilities industrial CO₂ point source

Technical acceptance enablers

- Tackle potential technological and industries' concerns
- Provide technical guidelines for companies based on CO2Fokus demo design
- Tasks are put in place to provide analysis of environmental, financial and regulatory requirements
- Join forces with other projects on common interest topics to amplify the impact of our activities

Thank you!

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

This document reflects only the authors' view and the Innovation and Networks Executive Agency (INEA) and the European Commission are not responsible for any use that may be made of the information it contains.

www.co2fokus.eu

vesna.middelkoop@vito.be

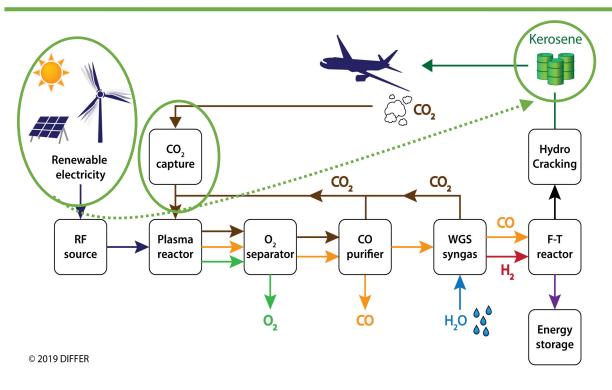
info@co2fokus.eu

Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO₂, syngas formation and Fischer - Tropsch synthesis

The KEROGREEN CO₂ plasma route to CO and alternative fuels

A. Pandiyan, S. Welzel, A. Goede, M.C.M. van de Sanden, M.N. Tsampas

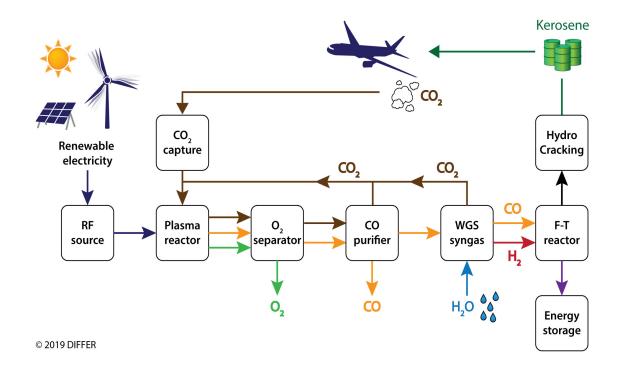
DUTCH INSTITUTE FOR FUNDAMENTAL ENERGY RESEARCH, EINDHOVEN, THE NETHERLANDS


HYGEAR

INERATEC

Kerogreen project

Kerogreen aim: Demonstation of the full chain process from renewable electricity, CO_2 (captured) and H_2O to kerosene.


- Research and optimization of individual process steps TRL (1-3) \rightarrow 4
- Integration phase at Karlsruhe Institute of Technology \rightarrow 3 L per day
- Duration 2018-2022

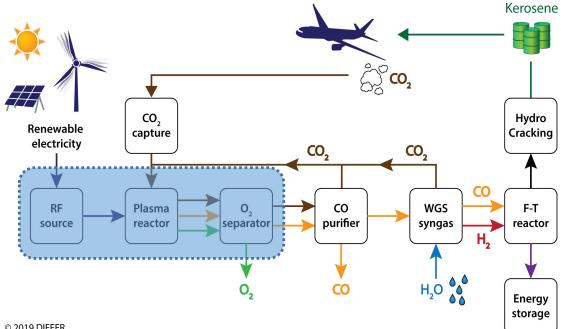
Kerogreen project

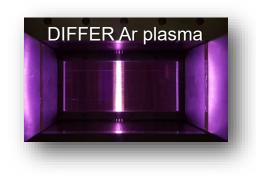
Main challenges

- Oxygen separation after plasmolysis by SOEC
- System integration of different technologies into one container sized assembly
- Maximization of the energy and carbon efficiency of the full chain

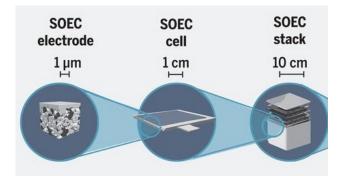
KEROGREEN offers an innovative conversion route based on:

- CO₂ plasmolysis (DIFFER)
- Electrochemical O₂ separation (DIFFER, VITO, Cerpotech, Hygear)
- CO purification (HYGEAR)
- Water gas shift reaction reaction (KIT)
- Fischer-Tropsch synthesis (INERATEC)
- Heavy HC hydrocracking (KIT)





Kerogreen project



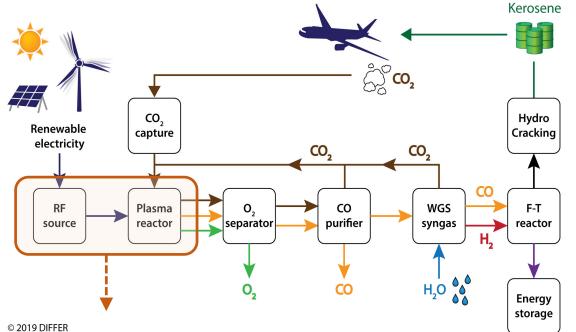
© 2019 DIFFER

DIFFER involvement

- Plasmolysis
 - Plasma modeling and optimization
 - Upscaling from 1 to 6 kW
- Electrochemical oxygen separation
 - Proof of concept
 - SOEC material requirements
 - Upscaling from 1W to 1.5 kW

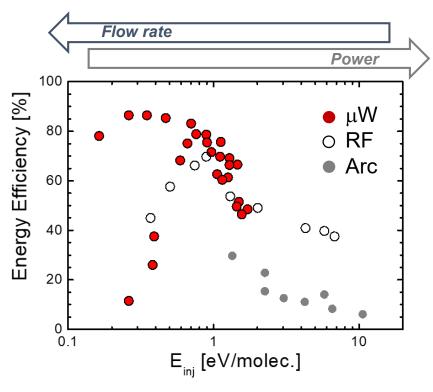
SOEC: Solid oxide electrolyte cells

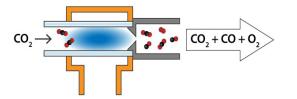
DOI: 10.1126/science.aba6118



CCU and AltFuel workshop, 16-17 February 2021

Why CO₂ plasmolysis?

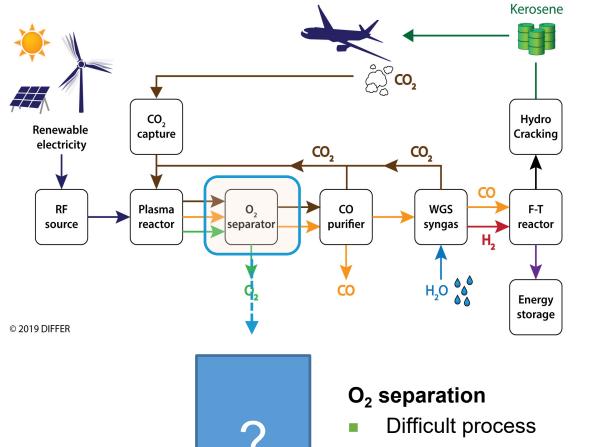




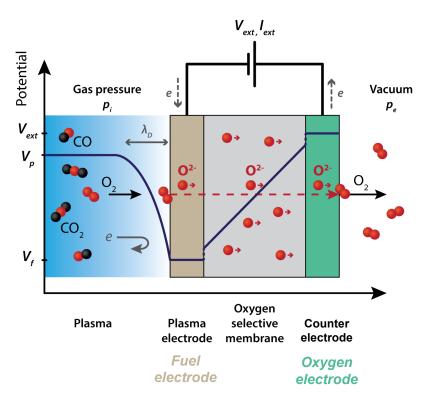
CO_2 plasmolysis: $2CO_2 \rightarrow 2CO + O_2$

- Input: CO₂ + renewable electricity
- Output: CO_2 , CO and O_2
- High energy efficiency, ...
- Main challenge O_2 separation

DOI: 10.1017/CBO9780511546075


CCU and AltFuel workshop, 16-17 February 2021

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909



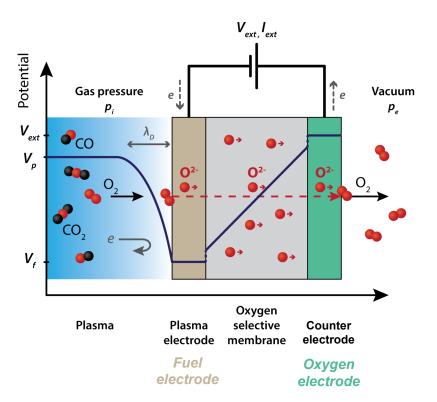
SOEC as oxygen separator

- Lack of literature
- SOEC: Electrochemical O₂ pumping

Conceptual design of plasma integrated SOEC

CCU and AltFuel workshop, 16-17 February 2021

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

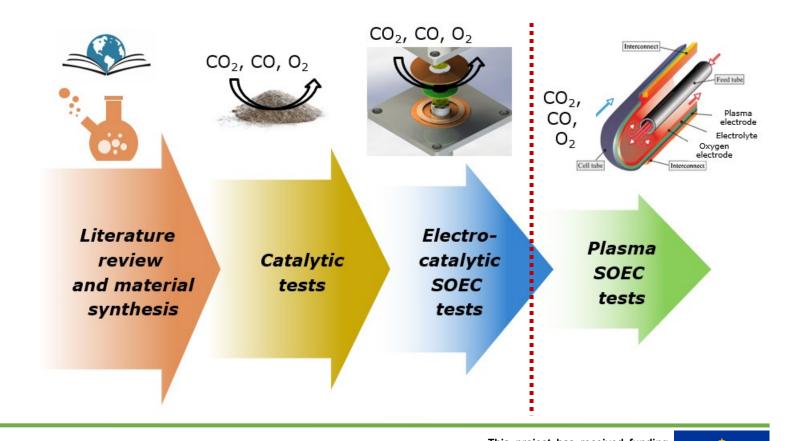


SOEC as oxygen separator

Material functionalities

- For both electrodes:
 - Mixed electronic & ionic conductivity
 - Low overpotential losses
- Electrolyte
 - Oxygen ion conductivity
 - Low resistance \rightarrow thin
- Key performance indicators
 - *High oxygen fluxes*
 - Stability
- Plasma (or fuel) electrode
 - Unconventional mixture (CO₂, CO, O₂)
 - Low CO oxidation activity

Conceptual design of plasma integrated SOEC

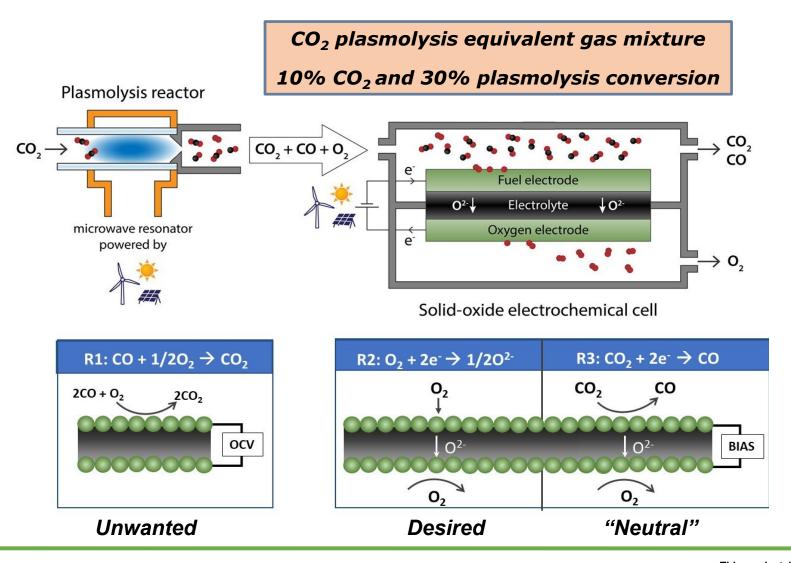


Plasma electrode development

- Literature review (redox properties)
- Material synthesis (Cerpotech)
- Catalytic tests

Testing

- SOEC electrocatalytic tests
- Plasma SOEC integrated tests



SOEC testing: Possible reactions

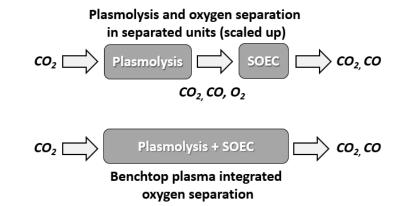
CCU and AltFuel workshop, 16-17 February 2021

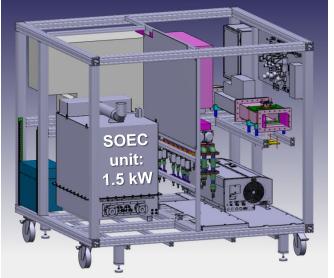
This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

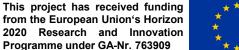
CCU and AltFuel workshop, 16-17 February 2021

Summary

Oxygen separation from CO_2 plasmolysis equivalent mixtures has been demonstrated.


Summary and outlook


- Lowering operating temperature decreases CO oxidation losses but also oxygen separation.
- SOEC operation with CO₂ plasmolysis equivalent mixtures improves materials stability.


Outlook for integration phase

- Advance SOFC architectures will decreased ohmic losses.
 - allow operation at lower T (less CO losses),
 - while achieving high oxygen pumping rates.
- Integrated phase: Commercial vendor \rightarrow 1.5 kW unit
- DIFFER studies: CO₂ plasma-integrated SOEC.

M.N. Tsampas m.tsampas@differ.nl

www.kerogreen.eu

vito

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

Thank you for your attention!

CO₂ utilisation focused on market relevant dimethyl ether production, via 3D printed reactor- and solid oxide cell based technologies

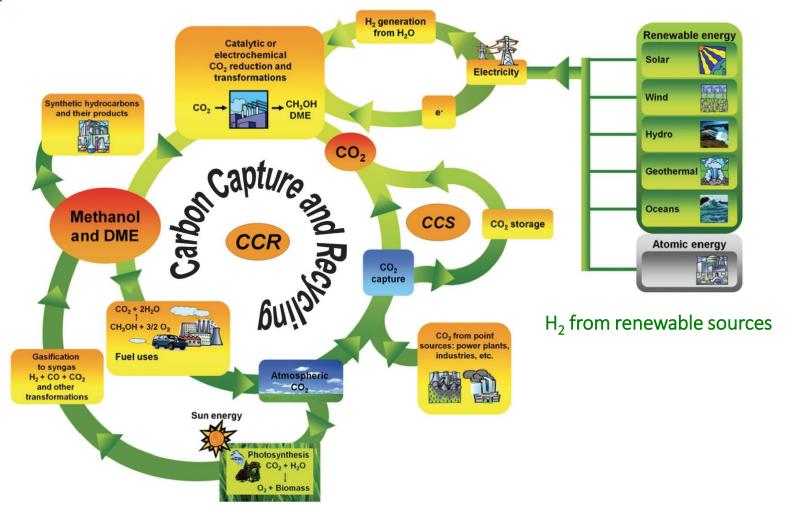
3D-printing in catalysis: Development of efficient hybrid systems for the direct hydrogenation of CO₂ to DME

INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILISATION

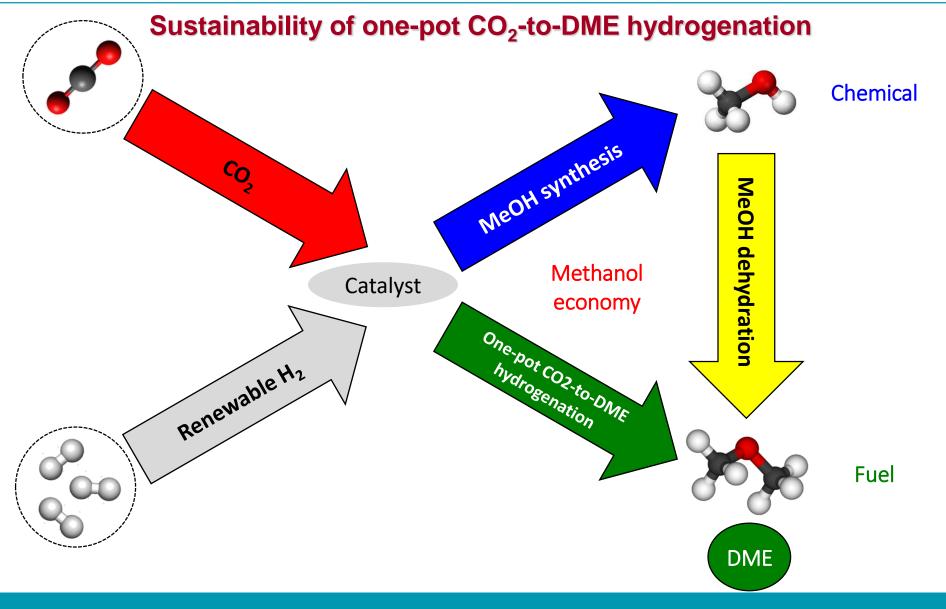
Giuseppe Bonura 16 February 2021

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

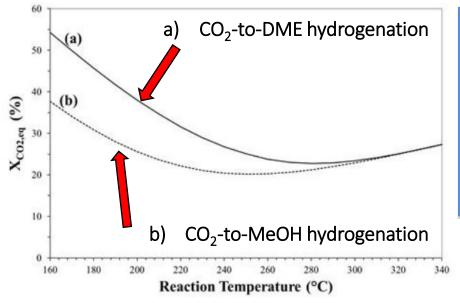
info@co2fokus.eu


Overview

- Carbon Capture and Recycling
- DME: a multipurpose chemical & a fuel
- Conventional two-step processes
- Integrated one-step hydrogenation CO₂-to-DME
- 3D catalysis: a step forward
- Catalytic results
- Rationalization of the catalytic behaviour
- Conclusions

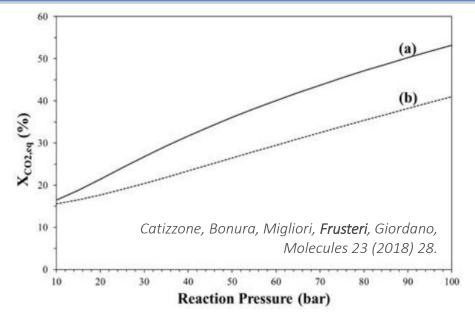

CO₂ as a substitute for toxic CO, derived from fossil carbon

Olah et al.// Chem. Soc. Rev. 43 (2014) 7995



www.co2fokus.eu

info@co2fokus.eu



Thermodynamics of CO₂ hydrogenation

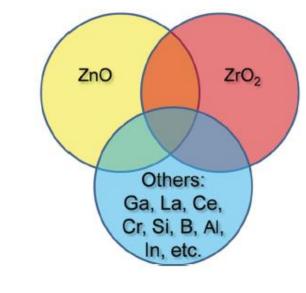
Due to methanol consumption by dehydration reaction, the one-step process is more efficient than the two-step process, with a main benefit at low temperature and high pressure.

$CO_2 + 3H_2 \Leftrightarrow CH_3OH + H_2O$	$\Delta \tilde{H}_{R}^{o} = -49.4 kJ \cdot \left(mol_{MetOH}\right)^{-1}$
$CO_2 + H_2 \Leftrightarrow CO + H_2O$	$\Delta \tilde{H}_{R}^{o} = +41.2 k J \cdot (mol)^{-1}$
$2CH_{3}OH \Leftrightarrow CH_{3}OCH_{3} + H_{2}O$	$\Delta \tilde{H}_{R}^{\circ} = -24kJ \cdot \left(mol_{DME}\right)^{-1}$
$CO + 2H_2 \Leftrightarrow CH_3OH$	$\Delta \tilde{H}_{R}^{o} = -90 kJ \cdot \left(mol_{MetOH}\right)^{-1}$
$2CO_2 + 6H_2 \Leftrightarrow CH_3OCH_3 + 3H_2O$	$\Delta \tilde{H}_{R}^{\circ} = -122 k J \cdot \left(mol_{DME} \right)^{-1}$

Conventional two-step processes

1. Methanol synthesis from syngas

Cu-based catalysts (high activity and selectivity)


- Catalyst composition
 - a) Support \Rightarrow
- High SA_{BET}
- Cu⁺ stabilization
- a) Promoter \Rightarrow

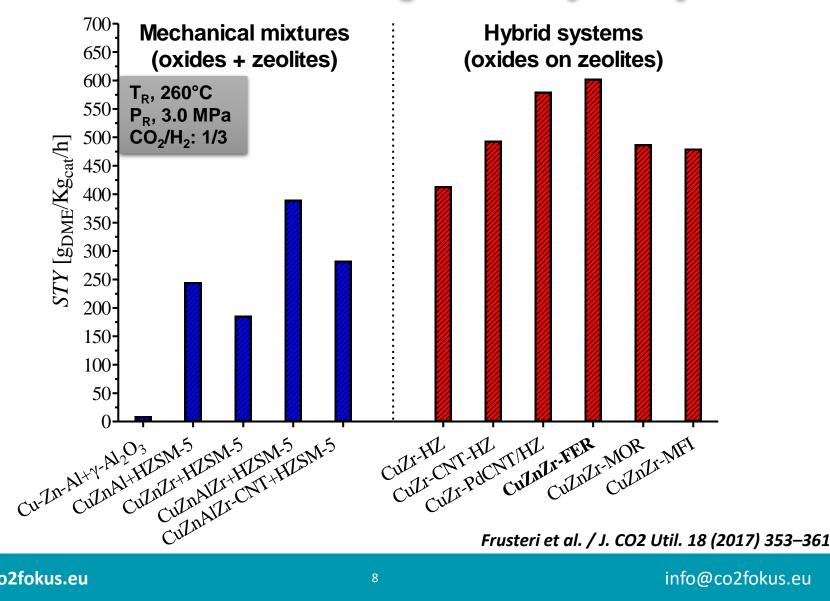
High MSA_{Cu} and D (%)
 High Poisoning resistance

- Catalyst preparation
 - Co-precipitation [Jingfa et al., 1996]
 - Sol-Gel [Köppel et al., 1998]
 - Incipient-Wetness [Toyir et al., 2001]
 - Combustion [Arena et al., 2004]
 - Reverse coprecipitation under ultrasounds [Arena et al., 2007]
 - Gel-oxalate coprecipitation [Bonura et al., 2014]

2. Dehydration of methanol

 γ -Al₂O₃, zeolites, heteropolyacids, ...

OPEN ISSUES


- a) Metal/Support interaction
- b) Metallic Dispersion
- c) "Water Poisoning"
- d) REACTION MECHANISM

Integrated one-step process: new hybrid catalysts **CATALYST CONCEPT CO**, Η₂ **SOLID ACID OXIDE SYSTEM** WITH PROPER FOR CO₂ AND H₂ **ACIDITY AND** ACTIVATION AT ≤ 200°C POROSITY IDEAL **HYBRID CATALYST OPTIMAL DISTRIBUTION HYDROPHOBIC OF DIFFERENT SITES** SOLID SURFACE **TO FAVOUR INHIBITES THE THE MASS TRANSFER** WATER ABSORPTION DME

Frusteri *et al.* // *Catal. Today* 277 (2016) 48–54. Frusteri *et al.* //*Catal. Today* 281 (2017) 337–344.

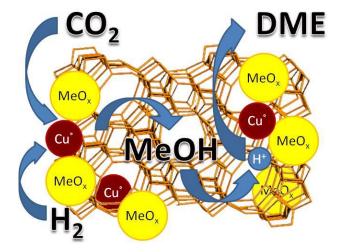
info@co2fokus.eu

Mechanical Mixtures vs. Single Grain Hybrid Systems

Integrated one-step process: new 3D hybrid catalysts

Preparation of 3D hybrid catalysts with reproducible properties at long radius

Combination of metal/oxide(s) and acidic functionalities in a single solid system

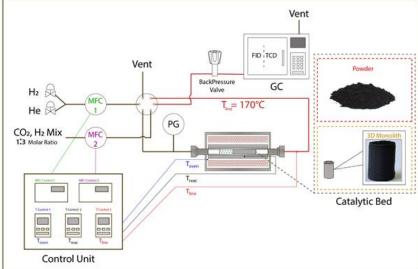

The parent catalysts are not distinguishable anymore

3D printing (VITO)

Coprecipitation of metal precursors by oxalic acid in a slurry solution containing a finely dispersed zeolite / binder paste / printing /drying / calcination

Not only uniform distribution... exposure *vs.* accessibility of surface sites

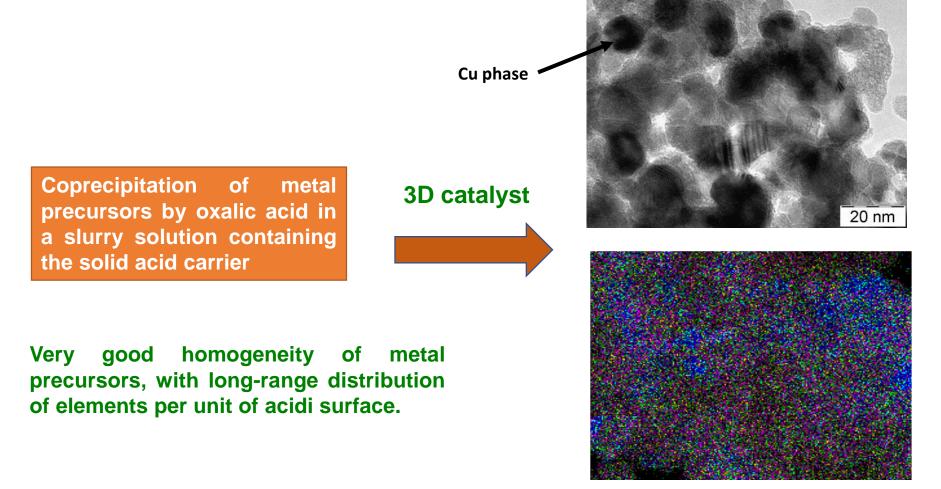
- Reproducibility
- Properties controlled
 - Texture
 - Structure
 - Morphology
 - Surface

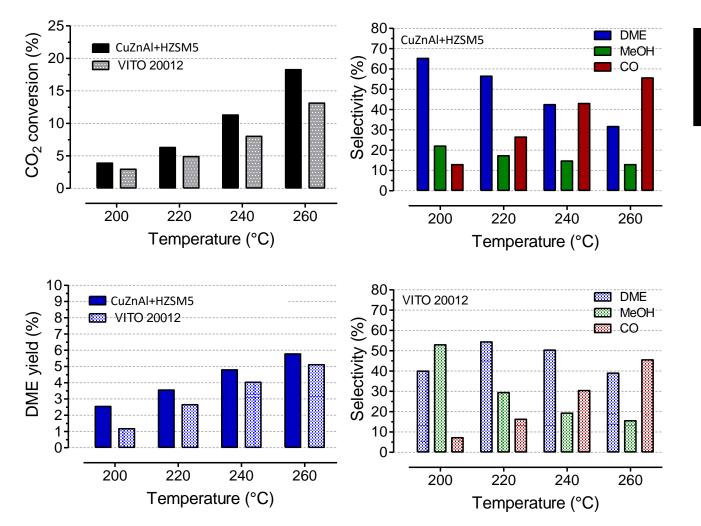


Experimental setup

CO₂-to-DME hydrogenation

Reactor id: 4.0 mm $wt_{cat}=0.25 \text{ g}$ $H_2:CO_2:N_2 = 69:23:8$ $GHSV: 8,800 \text{ ml}_n/g_{cat}/h$ $P_R=30 \text{ bar}$ $T_R=200-260 \,^{\circ}\text{C}$




Synthesis of a 3D hybrid catalyst

Conventional powdered vs. 3D printed catalysts (VITO)

Conventional catalyst exhibits a better performance than the 3D printed crushed monolith

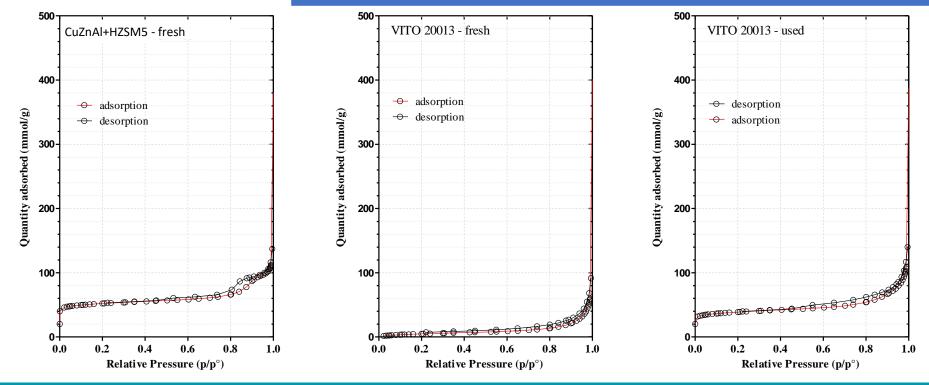
20012

Selectivity pattern quite different between conventional and 3D catalyst

Textural properties

A lower activity of the 3D catalysts is mainly ascribable to a dramatic loss of microporosity during printing

SAMPLE	SA _{Lang} (m²/g) (a)	PV (cm ³ /g) (b)	MV (cm³/g) (c)	APD (Å) (d)
CZA+HZSM5 - fresh	233.3±1.5	0.146	0.081	25
VITO 20013 - fresh	30.5±1.2	0.140	0.008	184
VITO 20013 - used*	175.6±1.5	0.173	0.060	39

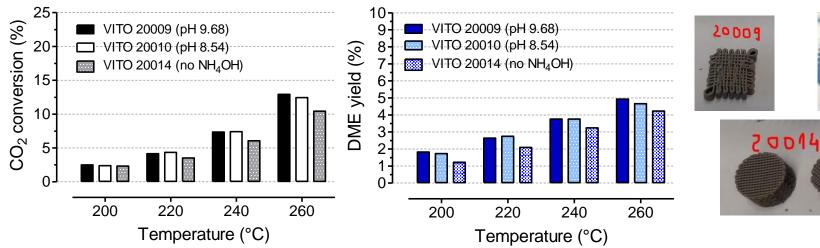

*Sample recovered after run at 30 bar and 260 °C, upon cooling at r.t.

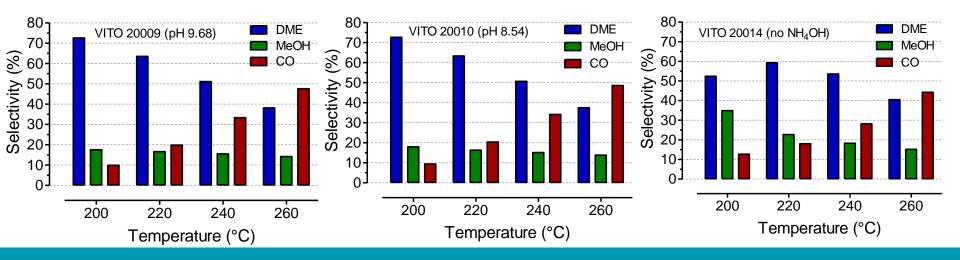
(a) Surface area determined according to the Langmuir model

(b) BJH desorption cumulative pore volume

(c) Micropore volume from Horvath-Kawazoe at relative pressure ≈ 0.2

(d) Average pore diameter determined from the geometrical formula: 4PV/SA

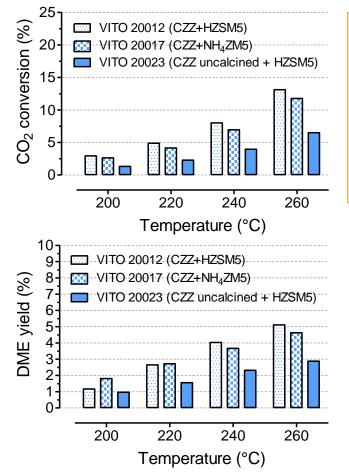




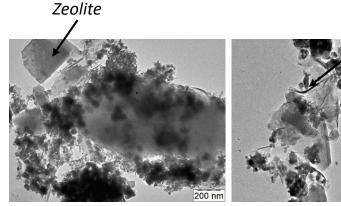
20010

Influence of pH on 3D printing

The preparation of the paste for 3D printing benefits from a higher pH


www.co2fokus.eu

Influence of pre-calcination of the phases :


VITO 20012 (precalcined phases before printing) vs. VITO 20017 (CZZ+ NH₄ZSM-5, co-catalyst not calcined) vs. VITO 20023 (CZZ uncalcined + HZSM-5)

- **1.** On VITO 20017, printing before stabilization of the zeolite phase prevents the shift of equilibrium as the result of a significant inhibition or reduction of acid sites (NH₃-TPD !), not available/activable anymore even after further calcination.
- 2. On VITO 20023, the activation of CO₂ is significantly depressed on a poor stabilized Cu phase (XRD!), demonstrating as the extent of metaloxide interface during preparation/calcination is crucial for addressing catalytic behaviour.

Needles !?!

VITO 20017 – TEM images on the fresh sample (calcined at ITAE @ 500 °C)

Key messages

- The development of a catalytic process for the direct conversion of CO₂ to DME with 3D hybrid systems is feasible.
- Very promising results were obtained using 3D hybrid system consisting of a mixed oxide phase supported on an acidic preformed carrier.
- 3D printing before stabilization of the acid phase prevents the shift of equilibrium as the result of a significant inhibition or reduction of acid sites, not available/activable anymore even after further calcination.
- 3D printing before calcination of methanol phase showed that the activation of CO₂ is significantly depressed on a poor stabilized metal phase, confirming as the extent of metal-oxide interface during preparation/calcination is crucial for addressing catalytic behaviour.
- High selectivity to DME can be achieved at reaction temperature lower than 250 °C and the current limit is related to CO₂ activation.

Open Issues

- Novel active phase suitable to activate CO₂ at low temperature taking a direct advantage on DME selectivity (see thermodynamics)
- New binders for a full control of texture/structure/surface properties
- Innovative stacked and alternating 3D reactors for increasing DME productivity from CO₂ hydrogenation in one step
- Optimization of catalyst stability and regeneration

Acknowledgements

□ EU H2020 - Grant agreement N. 838061 – CO2Fokus

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

http://www.itae.cnr.it

Dr. Francesco FRUSTERI Dr. Catia CANNILLA Mr. Aldo MEZZAPICA

Dr. Giuseppe BONURA

Dr. Serena TODARO

Dr. Leone FRUSTERI

Thank you!

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

This document reflects only the authors' view and the Innovation and Networks Executive Agency (INEA) and the European Commission are not responsible for any use that may be made of the information it contains.

www.co2fokus.eu

giuseppe.bonura@itae.cnr.it

info@co2fokus.eu

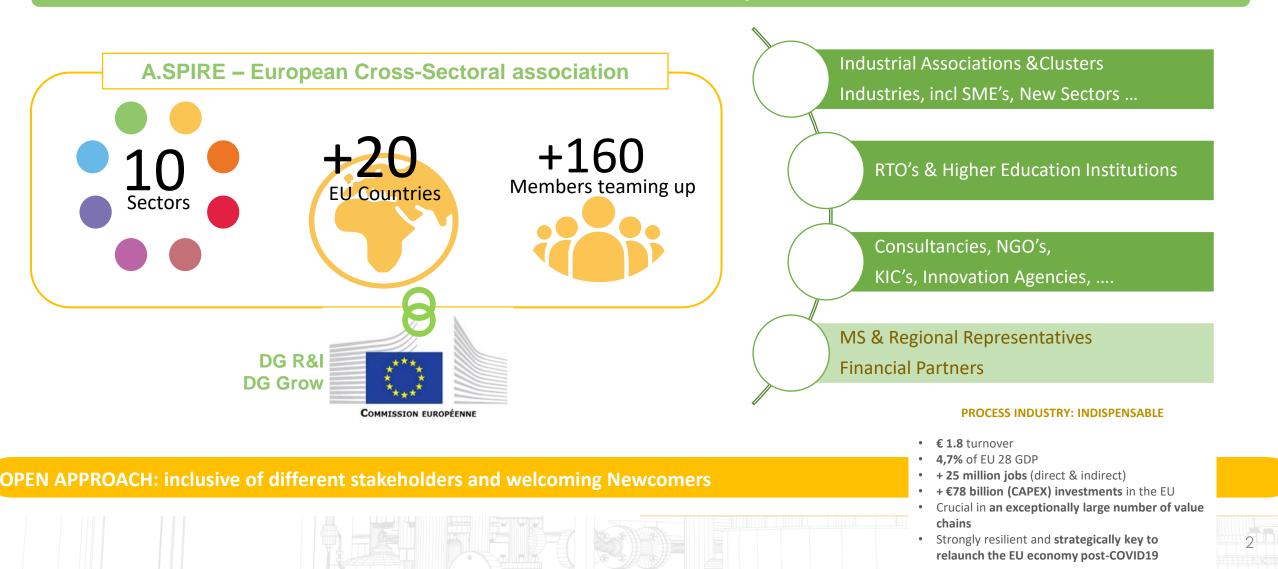
INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILIZATION TU/e - Eindhoven - 16-17 February 2021

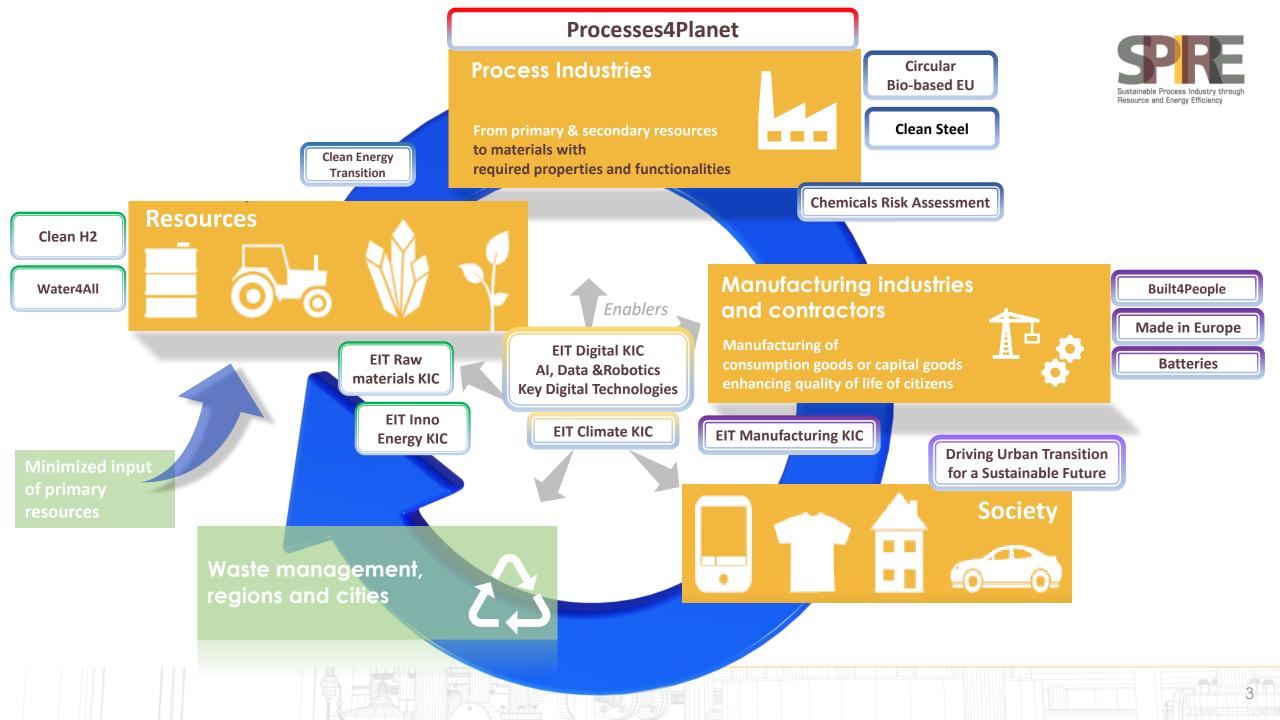
Plenary session (chairperson Fausto Gallucci)

14:00-15:00 Dr. Angels Orduna (Spire 2030)

Processes4Planet

Transforming the European Process Industry for a sustainable planet & a prosperous society




INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILIZATION TU/E - EINDHOVEN 16 February 2021

WHO ARE WE

A vibrant community ...

UNIQUE CROSS-SECTORIAL APPROACH

Accelerating Innovation and Maximising sustainable impact accross sectors and borders

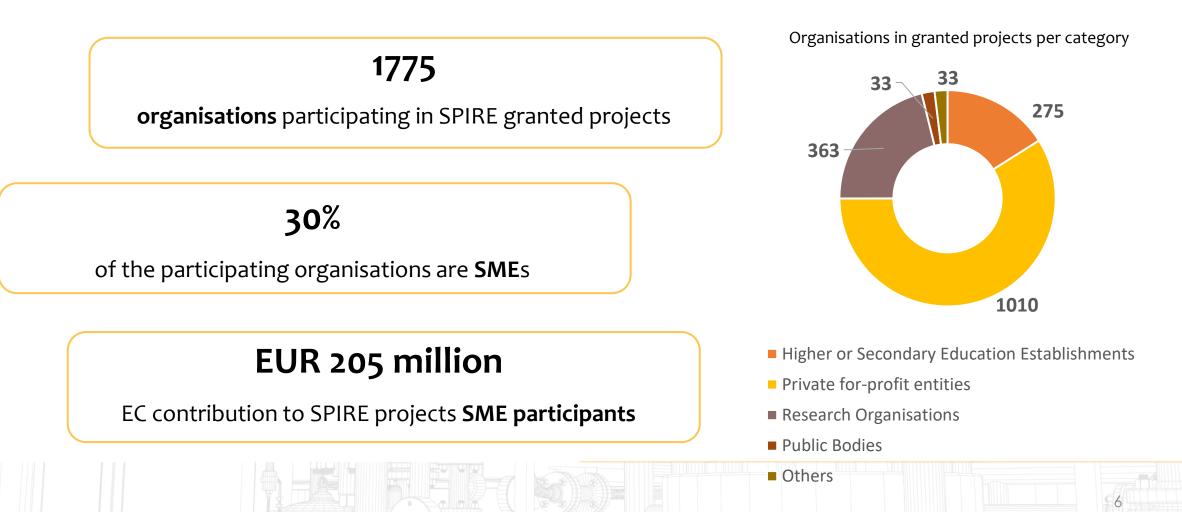
- First Partnership ever gathering 8
 Process Industry sectors.
 Currently 10
- Continuous dialogue on R&I and trust relation across SPIRE sectors and beyond
- Enhanced voice to shape the framework of process innovation and competitiveness through the dialogue with the public sector

THE VOICE OF

JOINT SOLUTIONS

- **Collaboration** with the innovation ecosystem, the value chain, society and the public sectors (RTOs, NGOs, EC, MS, regions...)
- Development of joint solutions through 125 SPIRE projects funded from 2014 to 2019, always respecting the Intellectual Property

- Direct access to a pool of knowledge, talent and applied research services through the RTOs
- Direct access to specialised SME providers
- Direct access of SMEs to growth opportunities, customers and new markets


OPPORTUNITIES

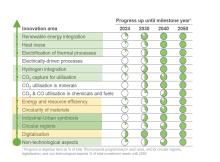
GOVERNANCE SPIRE cPPP

TRENDS REPORT 2020 – SPIRE PROJECTS OUTCOMES

In 2014-2019 SPIRE cPPP has supported a total of 125 projects.

Space Sustainable Process Industry through Resource and Energy Efficiency

Processes4Planet Towards the Next Generation of EU Process Industry


Transformation levers and tools to enable P4Planet to achieve its ambitions

Processes4Planet Innovation to reach First deployment & deliver Impact

Unique cross-sectoral community

36 innovation programmes to FILL the GAP

-

Skills, Jobs, Competitive gap analysis, Framework/Standards

First-of-a-kind plants

Hubs for Circularity

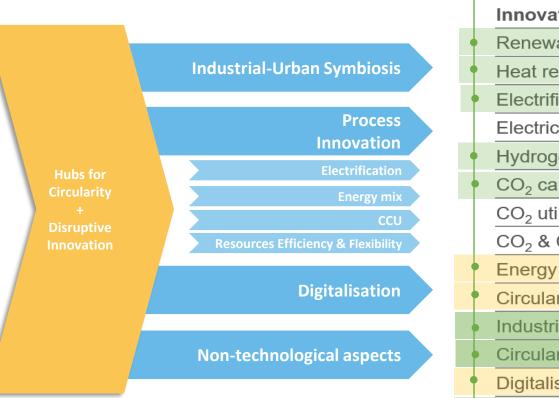
Ambitions to enable Prosperity for all

Climate neutrality

23

Near zero landfilling and near zero water discharge

> Sustainable Process Industry throug Resource and Energy Efficiency

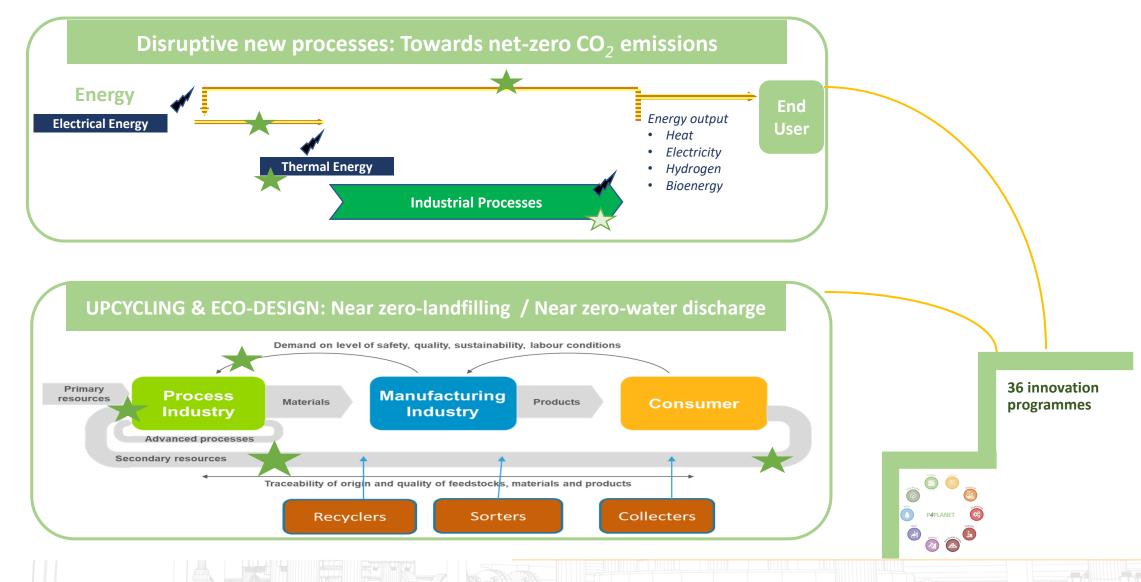


Competitive EU process industries

Processes4Planet Innovation Areas progress towards 2050

Progress up until milestone year¹

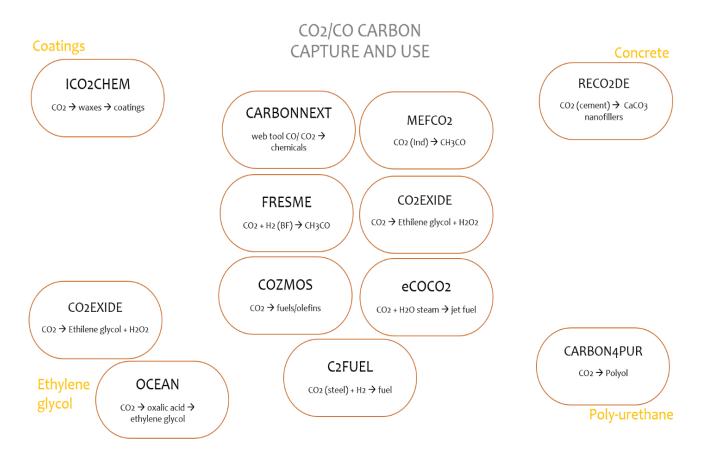
Areas of common challenges

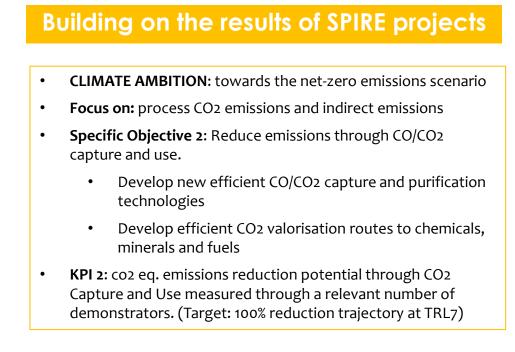

Innovation area	2024	2030	2040	2050
Renewable energy integration				
Heat reuse				
Electrification of thermal processes				
Electrically-driven processes	\bigcirc			
Hydrogen integration				
CO ₂ capture for utilisation				
CO ₂ utilisation in minerals	\bigcirc			
CO ₂ & CO utilisation in chemicals and fue	ls 🔘			
Energy and resource efficiency				
Circularity of materials				
Industrial-Urban symbiosis	\bigcirc			
Circular regions				
Digitalisation				
Non-technological aspects				

¹ Progress is depicted here as % of total TRL9 projects programmed in each area, and for circular regions, digitalisation, and non-technological aspects % of total investment needs until 2050

Combining efforts & ideas will accelerate innovations

Processes4Planet Innovation for Sustainable Prosperity




SUCCESS STORIES PORTFOLIOS

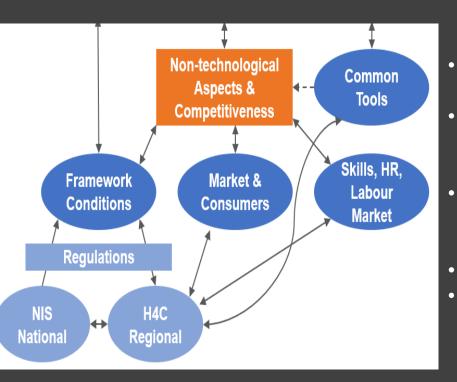
CARBON CAPTURE AND USE STORIES

P4Planet roadmap

14 IAs	Innovation area	36 IPs	Innovation programme
1	Renewable energy integration	1a	Integration of renewable heat and electricity
		1b	Integration of bioenergy, waste and other new fuels
		1c	Hybrid fuel transition technologies
		1d	Flexibility and demand response
2	Heat reuse	2a	Advanced heat reuse
2	Electrification of thermal processes	3a	Heat pumps
		3b	Electricity-based heating technologies
4	Electrically-driven processes	4a	Electrochemical conversion
		4b	Electrically driven separation
4	Hydrogen integration	5a	Alternative hydrogen production routes
		5b	Using hydrogen in industrial processes
		5c	Hydrogen storage
6	CO2 capture for utilisation	6a	Flexible CO2 capture and purification technologies
7	CO2 utilisation in minerals	7a	CO2 utilisation in concrete production
		7b	CO2 utilisation in building materials mineralisation
8	CO2 & CO utilisation in chemicals and fuels	8a	Artificial photosynthesis
		8b	Catalytic conversion of CO2 to chemicals or fuels
		8c	Utilisation of CO2 and CO as building block in polymers
		8d	Utilisation of CO to chemicals or fuels
9	Energy and resource efficiency	9a	Next-gen catalysis
		9b	Breakthrough efficiency improvement
10	Circularity of materials	10a	Innovative materials of the process industries
		10b	Inherent recyclability of materials
		10c	Upgrading secondary resources
		10d	Wastewater valorisation
11	Industrial-Urban symbiosis	11a	Demonstration of Industrial-Urban Symbiosis
12	Circular regions	12a	European Community of Practice
		12b	Development of Hubs for Circularity
13	Digitalisation	13a	Digital materials design
		13b	Digital process development and engineering
		13c	Digital plant operation
		13d	Intelligent material and equipment monitoring
		13e	Autonomous integrated supply chain management
		13f	Digitalisation of industrial-urban symbiosis
14	Non-technological aspects	14a	Integration of non-technological aspects in calls
		14b	Human resources, skills and labour market

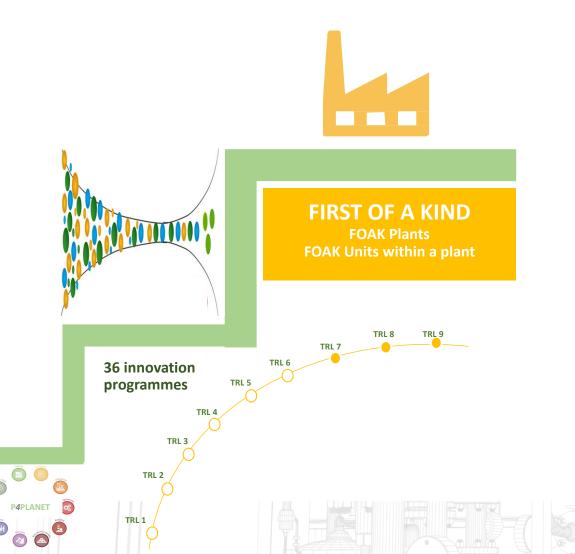
12

Processes4Planet Innovation for Sustainable Prosperity



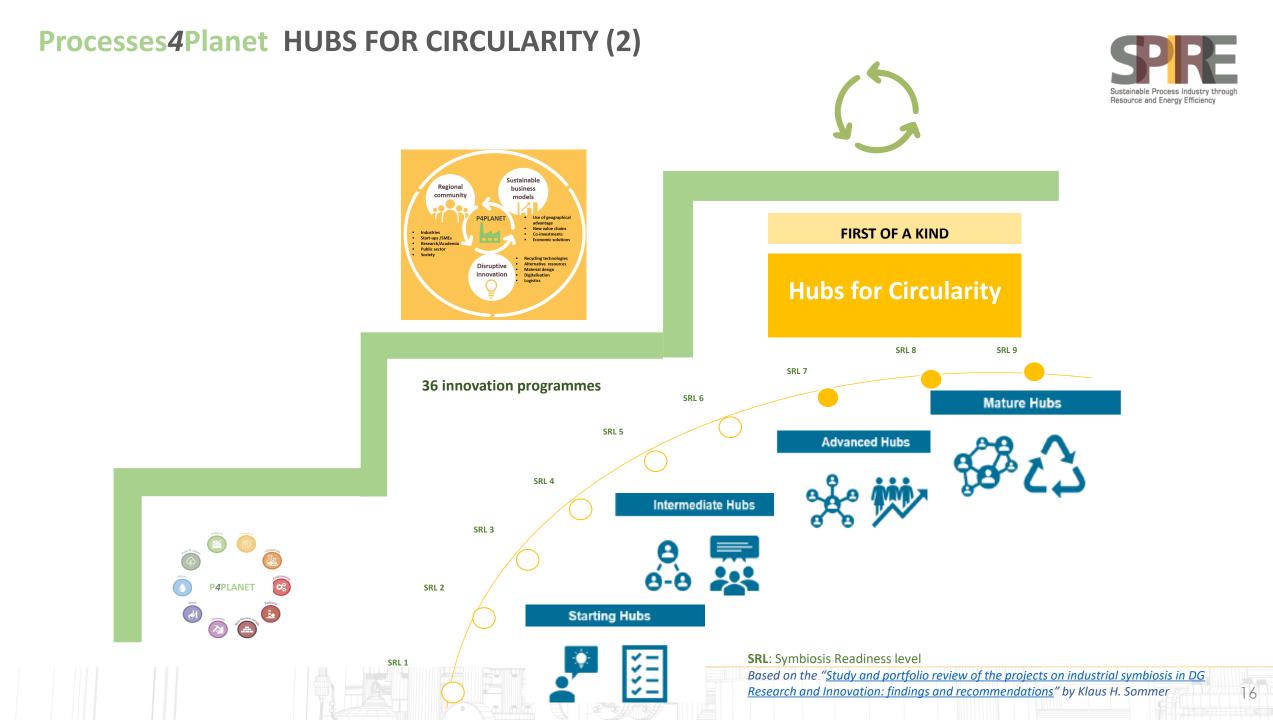
Processes4Planet

SPIRE/P4PLANET sectors and innovation eco-system working together for the skills of the future on Industrial-Urban Symbiosis and the Process Industry 4.0 NON-TECH & SOCIAL INNOVATION Delivering more societal, economic and market impact.


- EU, national & regional framework conditions
- Management of market & consumer demands & changes
- Effective common tools: LCA, business models, digital methodologies...
- Gender balance
- Human Resources, skills
 and labour market

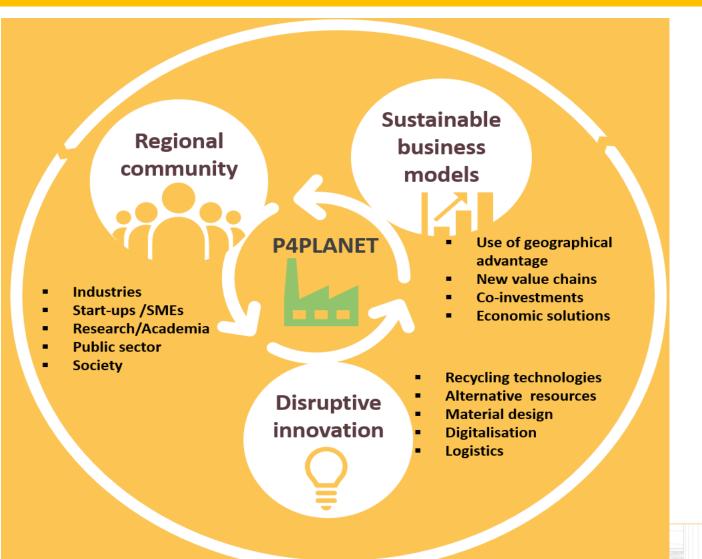
14

Processes4Planet Objective: Impact


MARBLES: a showcase of the Process Industry transformation

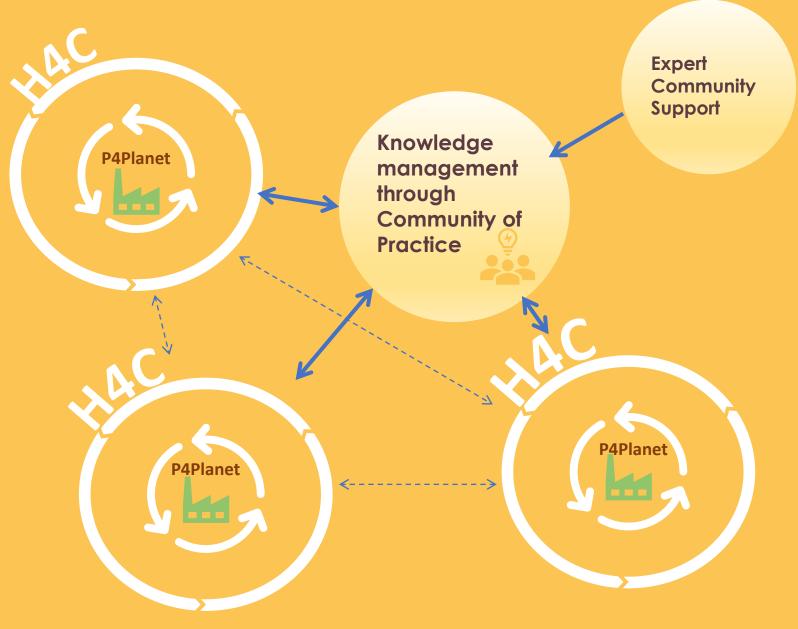
- First-of-a-kind Large scale plants in operation
- Combine one or several P4Planet Innovations towards the 2030/2050 ambitions to reach Climate neutrality and circularity
- Acting as Hubs of bulk amounts of resources from industry and the municipalities.
- Several marbles will likely connect to reach together the targets of the partnership's KPIs
- 50+ Marbles identified of which ca. We aim to launch 15 in the period 2021 2030, responding to the green-deal plan, and enabled by the P4planet innovation portfolio

PRIVATE INVESTMENTS


- Industry leader commitment
- when technical and economic feasibility is proved through Horizon Europe programs.
- Public support needed to de-risk and accelerate

Processes4Planet HUBS FOR CIRCULARITY (1)

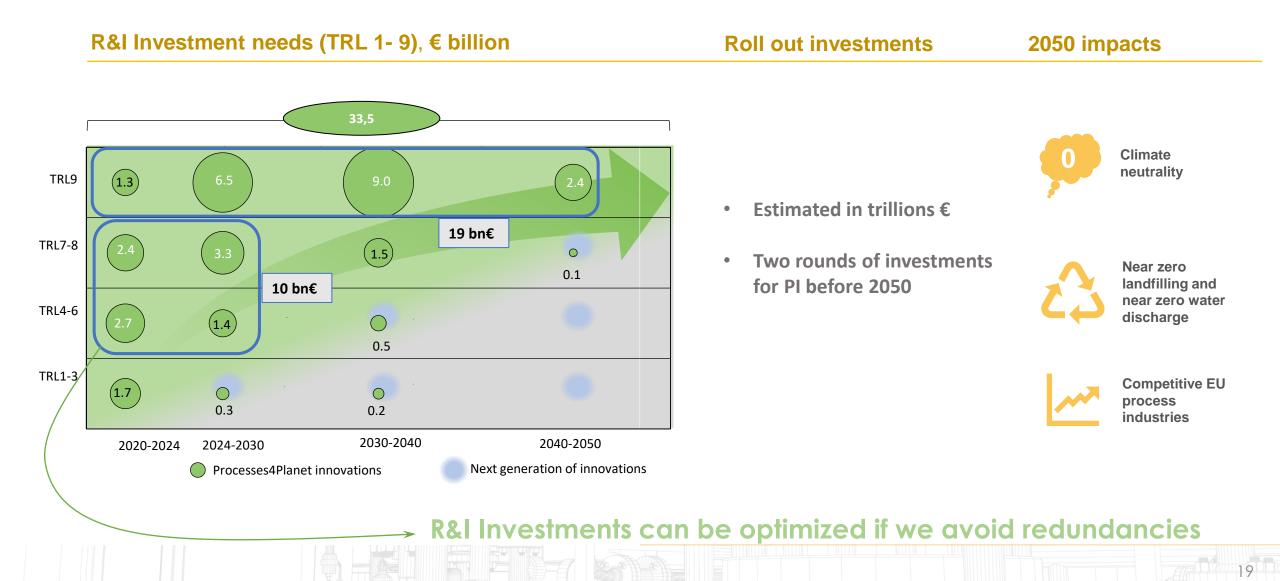
Systemic geographical proximity connected across EU regions



THE H4Cs CONCEPT

Self-sustaining economic industrial ecosystems for full-scale Industrial-Urban Symbiosis and Circular Economy, closing energy, resource and data loops and bringing together all relevant stakeholders, technologies, infrastructures, tools and instruments necessary for their incubation, implementation, evolution and management.

- → Territorial systemic solutions (regional approach)
- \rightarrow Processes4Planet inside!
- → Facilitation necessary to overcome nontechnological barriers to symbiosis


European Community of Practice

Platform for non-competitive exchange of **knowledge** and best practices

- Practical toolbox: technologies and tools
- Innovation programmes for finding the missing pieces in the puzzle of symbiosis
- **Modelling** circular concepts and plants of the future
- Enhancing **replicability**
- Communication and transfer of technologies and solutions
- Education and training
- **Sustainability** of the network

MASSIVE INVESTMENTS NEEDED TO REACH IMPACT JOINING FORCES WILL HELP

WHY JOIN A.SPIRE

Teaming up to address the challenges of Climate Change, Circular Economy and Competitiveness together

LARGER INDUSTRIES:

- Continuous dialogue on R&I across SPIRE sectors and beyond
- Channel to raise your voice on R&I for HEU & other programmes
- Access to a pool of knowledge & talent (in Universities, research centres....)
- Direct access to SME providers
- Collaboration with the innovation ecosystem and value chain
- Access to developments by other projects, SMEs, universities...
- Protection of intellectual property
- Dialogue with the EC, MS, regions, MePs & other stakeholders

Further benefits to other members

SMEs:

- Direct Access to growth opportunities
- Direct Access to new markets
- Direct Access to large industry customers

RTOs, NGOs Innovation agencies et al.:

- Direct Access to applied innovation
- Link to deliver impact to society and regions
- Collaboration for disruptive innovations

SMEs in SPIRE: A Success Story

Growing above the EU-28 average

- 7 new employees / SME (higher than EU average = 2)
- 40% growth in turnover (+double than EU average)
- 27% of SMEs won new business through SPIRE contacts

Key to Process Innovation

- Innovative SMEs delivering innovations for the Process Industry
- They develop the solutions with their customers
- The roadmap signals their market opportunities

SMEs ARE PARTNERS IN +100 SPIRE PROJECTS like Dryficiency, Dream, Reslag, Liberate, etc... SMEs COORDINATE + 17 SPIRE ROJECTS like Scaler, Sharebox, Maestri, IdB, Spring, MultiCycle, etc...

Ceramics awarded as the most successful small sector in SPIRE projects

SMEs in P4PLANET: Key players & opportunities **P** Resource and Energy Efficient **First-of-a-kind plants Hubs for Circularity** SPECIALISED ON **DIFFERENT AREAS:** 36 innovation

programmes to FILL the GAP

Key players in the HUBS4CIRCULARITY

- Process Innovation for the Process Industry
- Engineering
- Waste Management

RAISE THE SMEs VOICE

- In Working Groups
- In the Advisory Group
- In the Board

KEY PARTNERS IN P4PLANET PROJECTS

WHAT'S NEXT

- February –March 2021:
 - A.SPIRE members finalise topics and negotiations for P4Planet's MoU
 - Define new working structure within A.SPIRE
 - 8 to 17 Feb: P4PLANET's ideation/brokerage event
 - March (tbc): follow up P4Planet's Brokerage event
 - 19 March (A.SPIRE BoD) + 31st March (A.SPIRE General Assembly)
- April 2021: Signature of Processes4Planet MoU with the European Commission
- May 2021: Processes4Planet launch event (Process Industry conference)
- April June 2021:
 - Kick-off of new working structure of A.SPIRE: engagement of our members
 - Kick-off of the new governance and advisory structures of Processes4Planet: Partnership Board, Feedback Panel and Impact Panel
 - 19 June: A.SPIRE BoD meeting
- September November 2021: Projects & H4Cs Forum + Board meeting

INTERNATIONAL WORKSHOP ON CO2 CAPTURE AND UTILIZATION TU/e - Eindhoven - 16-17 February 2021

Session 2A (chairperson Giampaolo Manzolini)

15:00-15:20 Dr. G. Garcia - LCA and TEA of the COZMOS technology

- 15:20-15:40 Dr. A. Mattos or Dr. A. Mitchell How can public policy and business model innovation be developed to address challenges of CCUS and realise the opportunity?
- 15:40-16:00 Dr. L. Engelmann Perception of CO₂-based fuels and their production in international comparison

16:00-16:20 Dr. N. Dunphy - Social studies in REALISE project

LCA and TEA of the COZMOS technology

Guillermo Garcia-Garcia

G.Garcia-Garcia@Sheffield.ac.uk

UK Centre for Carbon Dioxide Utilisation The University of Sheffield

International Workshop on CO2 Capture and Utilization

16-17 February 2021

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

Contents

- Introduction to LCA and TEA methodologies
- Literature review of LCA studies of CCU products
- Environmental analysis of catalysts
- Initial stages of the full LCA and TEA for COZMOS
- Conclusions

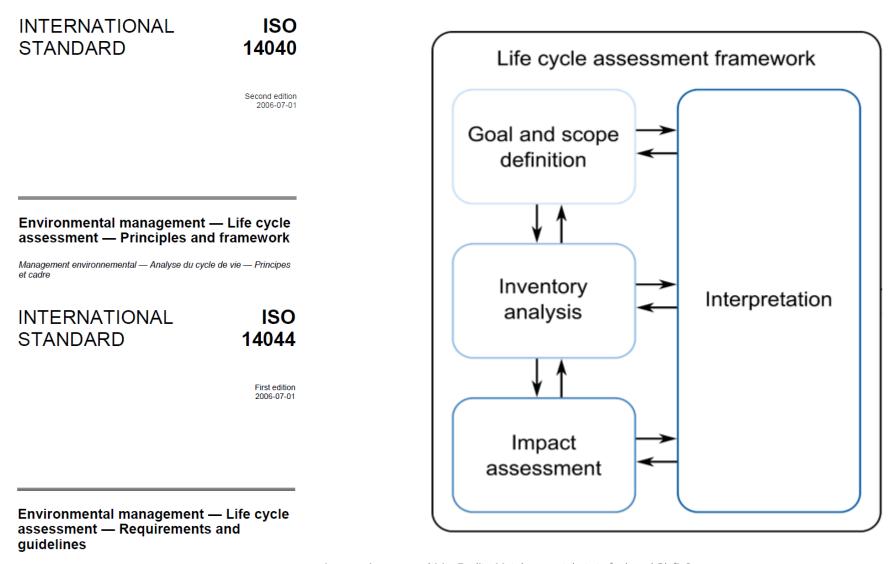
LCA and TEA methodologies

- As research in CCU matures, investors and funders require clarification on the credentials of these technologies
- Governments and regional authorities are creating roadmaps and require clarity on CCU options
- Companies are trying to choose between bio-based, CCU and other waste routes to create their products and need data for comparisons
- Life-Cycle Assessment (LCA) can help us to analyse environmental consequences of decisions
- Techno-Economic Assessment (TEA) can help us to analyse economic consequences of decisions
- Both LCA and TEA allow technologies to be compared

What are the environmental and economic consequences of CCU? Can CCU reduce CO₂ emissions and be economically profitable?

Definition of LCA

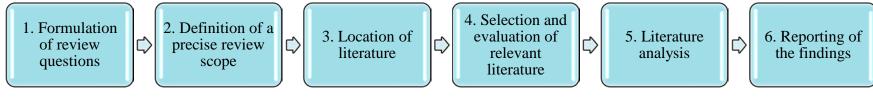
Life-cycle assessment is a methodology to account for the environmental impacts of a product, service, process, company, etc. throughout its entire life cycle

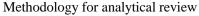


COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

5

Structure of LCA studies


Management environnemental — Analyse du cycle de vie — Exigences et lignes directrices


2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. bean Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

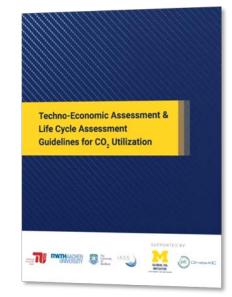
Literature review

• Following CCU products studied: methanol, methane, DME, DMC, propane and propene

Research questions

- 1. What are the most promising products that could be produced from CO_2 ?
- 2. What are the potential environmental impacts and/or benefits of producing these products from CO_2 , in comparison with traditional methods?
- 3. What is the level of application of the LCA methodology to study CCU?

Literature review – general findings


- Large potential from CCU for a number of feedstocks
- Main constraints:
 - Availability of green hydrogen. If hydrogen is from fossil sources or current grid mix, the environmental benefits can be reduced or disappear
 - The origin of electricity has a key role in determining the final environmental impact of the process. Current grid mix is unfavourable, future scenarios need to be realistic
 - CO₂ capture, separation, purification and transport needs have a high impact
- Need for full LCAs to assess the environmental impacts
 - Not only look at Global Warming Potential or carbon footprint, but also other impacts
 - All life cycle stages have to be considered for a consistent, robust analysis
- A strong value chain is required to support the production of CO₂-based products

Literature review – use of LCA to analyze environmental impacts of CCU technologies

- Few LCA studies of CCU systems have been undertaken so far
- Often, significantly different results are obtained for LCA studies carried out for the same CO₂-based product manufactured by the same route
- Main reasons behind this are different assumptions about the supply of feedstocks (e.g. CO₂, H₂ and electricity), definition of the system boundaries, and the way to allocate products and co-products (i.e. multi-functionality issues)
- Most studies focus on climate change or global warming only, omitting the rest of the environmental impact categories
- A common framework for LCA of CCU is needed: in addition to generic LCA standards (e.g. ISO 14040, ILCD Handbook) we are using The Guidelines for LCA and TEA of CCU

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS.

More information in our journal article

- "Analytical review of Life Cycle Environmental Impacts of Carbon Capture and Utilization Technologies"
- Published in ChemSusChem in January 2021
- Open Access, free to download at:

https://chemistryeurope.onlinelibrary.wiley.com/doi/a bs/10.1002/cssc.202002126

doi: 10.1002/cssc.202002126

Analytical Review of Life-Cycle Environmental Impacts of Carbon Capture and Utilization Technologies

Guillermo Garcia-Garcia, $^{[4]}$ Marta Cruz Fernandez, $^{[6]}$ Katy Armstrong, $^{[4]}$ Steven Woolass, $^{[6]}$ and Peter Styring $^{6(a)}$

[a] UK Centre for CO2 Utilization, Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, UK

[b] Tata Steel, Unit 2, Meadowhall Business Park, Carbrook Hall Road, Sheffield S9 2EQ, UK

*Corresponding author. E-mail: p.styring@sheffield.ac.uk

Abstract

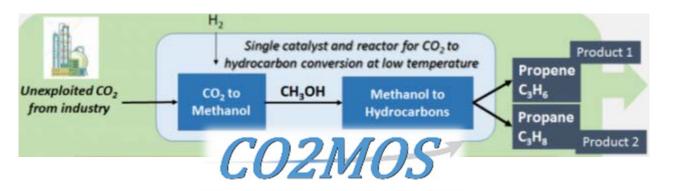
Carbon capture and utilization (CCU) has been proposed as a sustainable alternative to produce valuable chemicals by reducing the global warming impact and depletion of fossil resources. To guarantee that CCU processes have environmental advantages over conventional production processes, thorough and systematic environmental impact analyses must be performed. Life-Cycle Assessment (LCA) is a robust methodology that can be used to fulfil this aim. In this context, this article aims to review the life-cycle environmental impacts of several CCU processes, focusing on the production of methanol, methane, dimethyl ether, dimethyl carbonate, propane and propene. A systematic literature review is used to collect relevant published evidence of the environmental impacts and potential benefits. An analysis of such information shows that CCU generally provides a reduction of environmental impacts, notably global warming/climate change, compared to conventional manufacturing processes of the same product. To achieve such environmental improvements, renewable energy must be used, particularly to produce hydrogen from water electrolysis. Importantly, we identified different methodological choices being used in the LCA studies, making results not comparable. There is a clear need to harmonize LCA methods for the analyses of CCU systems, and more importantly, to document and justify such methodological choices in the LCA report.

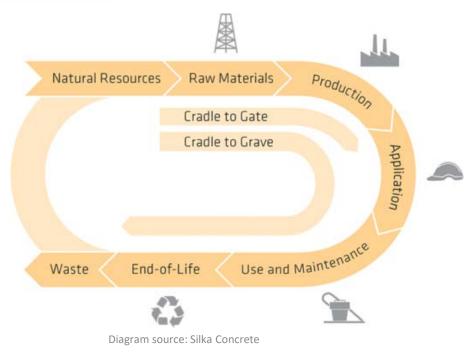
Keywords

Carbon capture and utilization \cdot environmental analysis \cdot life-cycle analysis \cdot sustainable chemistry \cdot renewable resources

1 Introduction

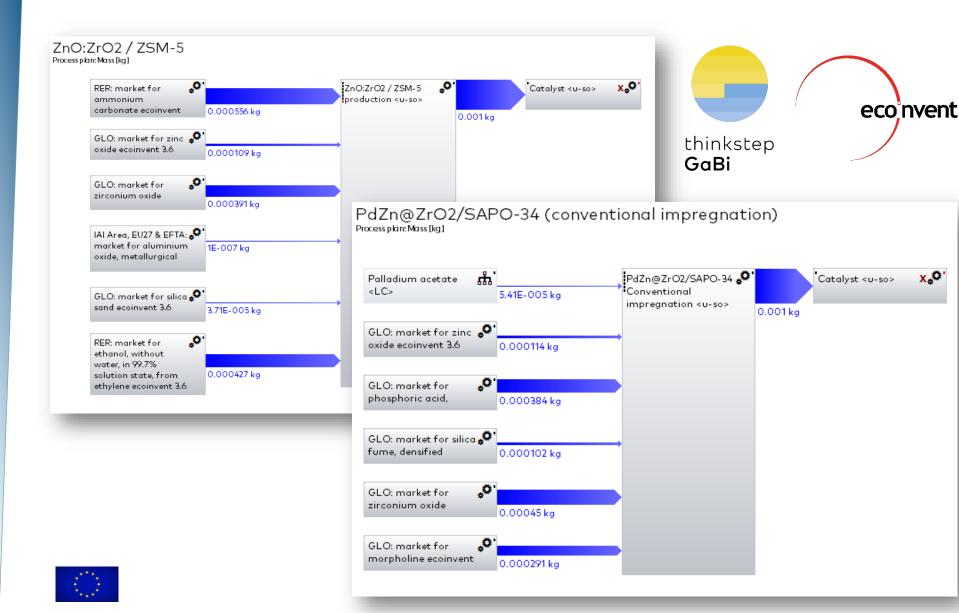
Global anthropogenic fossil CO₂ emissions have continuously increased over the last decades, peaking at 37.9 Gt in 2018 [1]. They represent over 75% of the total anthropogenic greenhouse gas (GHG) emissions [1], causing global warming and therefore affecting the Earth's climate system. IPCC [2] estimates that, if these emissions keep growing at the current rate, global


Page 1 of 54

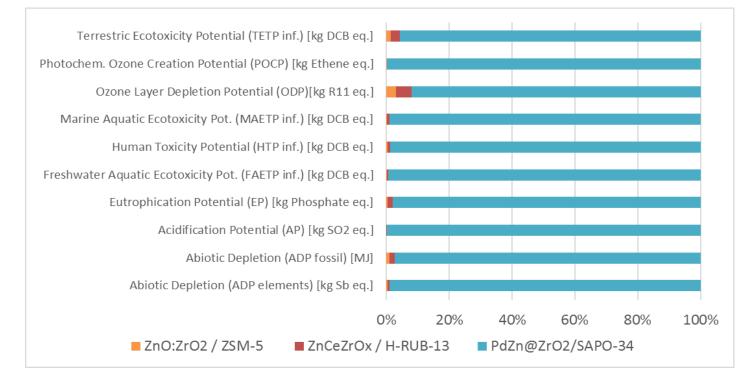

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

Environmental impacts of catalysts



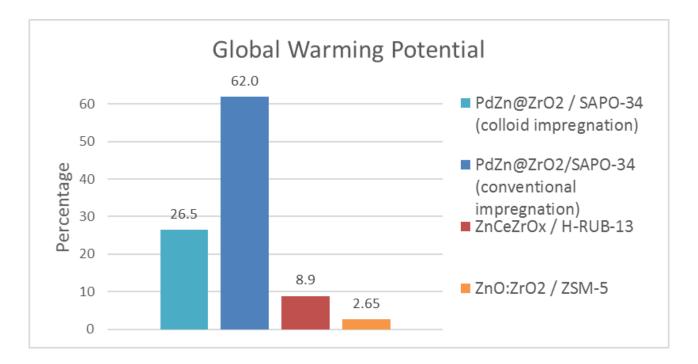
- Catalyst compared:
 - ZnO:ZrO₂ / ZSM-5
 - ✓ PdZn@ZrO₂ / SAPO-34
 - ✓ ZnCeZrO_x / H-RUB-13
- Cradle to gate comparison
- The comparison was initially done in terms of 1 g of catalyst produced



GaBi models

Environmental impact results

- With the assumptions of the study, the catalyst with palladium had the largest global warming potential, most of it coming from the palladium content
- The catalyst with the lowest GWP is ZnO:ZrO2/ZSM-5

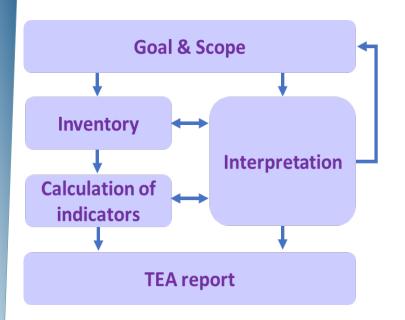


COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

Sensitivity analysis

- We also did sensitivity analysis for the catalyst preparation method and the reaction yield
- Including the increased yield, reduced the relative impact of the catalyst compared to the other ones, but remained the highest one

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.



Definition of TEA

- Techno-Economic Assessment (TEA) is a methodology to analyze the technical and economic performance of a process, product or service
- TEA integrates **cost, revenue and technical criteria** with a general focus on the production phase (but not always) typically gate to gate type studies
- TEA is an assessment methodology that can aid in making decisions
- TEA can be used to feed back recommendations during the design phase
- TEA results are specific to a scenario/context

Structure of TEA studies

TEA is built on the framework outlined in the LCA ISO

- **Goal** provides guidance for the overall study
- **Scope** defines the system boundary
- Inventory collects the relevant data
- Calculation produces results
- Interpretation assesses the quality of results, provides recommendations & conclusions
- Reporting captures the outputs of the study in a form that can be communicated consistently and transparently

TEA is an iterative process – we often go back and make adjustments

Scope of LCA and TEA studies

- Both <u>LCA</u> and <u>TEA</u> will be aligned
- <u>The main goal</u> is to assess whether the use of carbon intensive gases from the steel industry and the petrochemical refinery to produce propane and propene would have an economic and/or environmental benefit when compared to the conventional production of those products
- Gate to gate study

Upstream operations are unchanged in the different scenarios so they are not included

<u>Functional unit</u>:

Production of 1 kg of propane

Natural Resources Raw Materials Production Cradle to Gate Cradle to Grave Waste End-of-Life Use and Maintenance

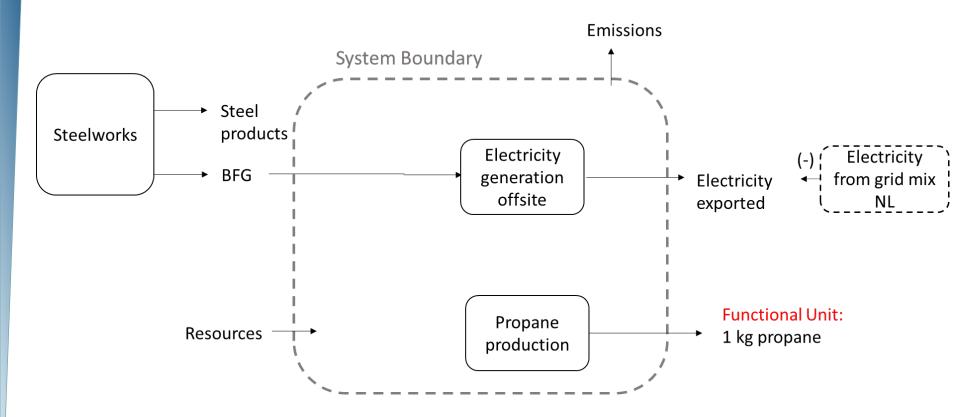

All the products will be considered in the study even if they are not part of the functional unit

The product distribution can be adjusted with the reactor conditions

COZMOS process

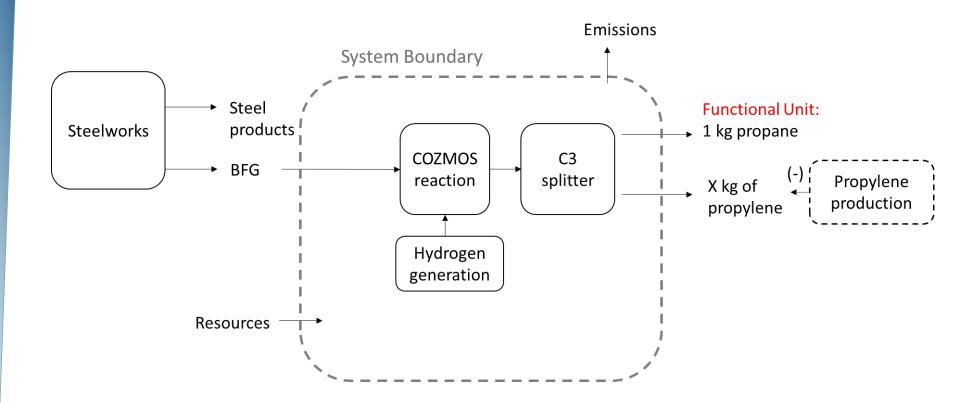
17

LCA and TEA scenarios


4 main scenarios considered:

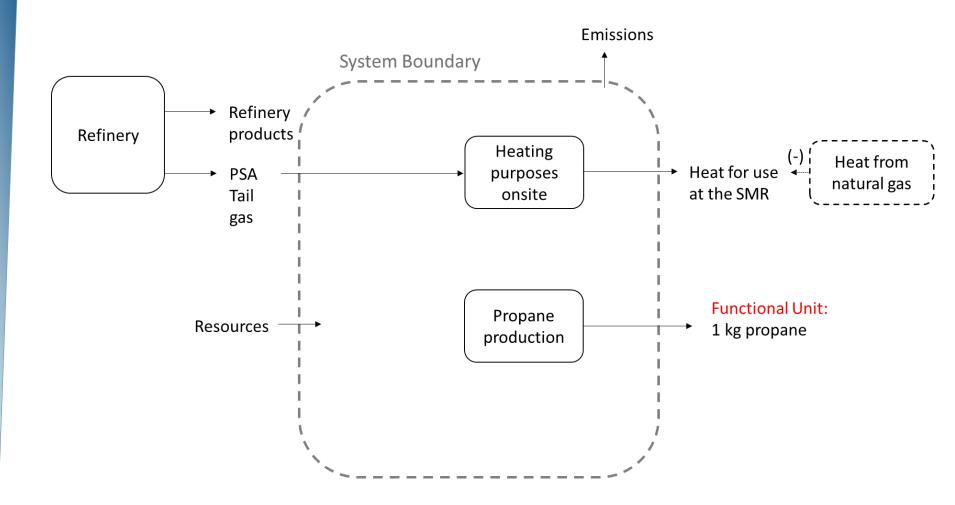
- 1. Tata Steel reference or baseline case, where the BFG is sent offsite for electricity generation
- 2. Tata Steel COZMOS scenario, where BFG is used within COZMOS
- 3. Tupras reference case, where the PSA tail gas is used for heating
- 4. Tupras COZMOS scenario, where the PSA tail gas is used for the COZMOS process

Scenario 1: Reference case, Tata Steel

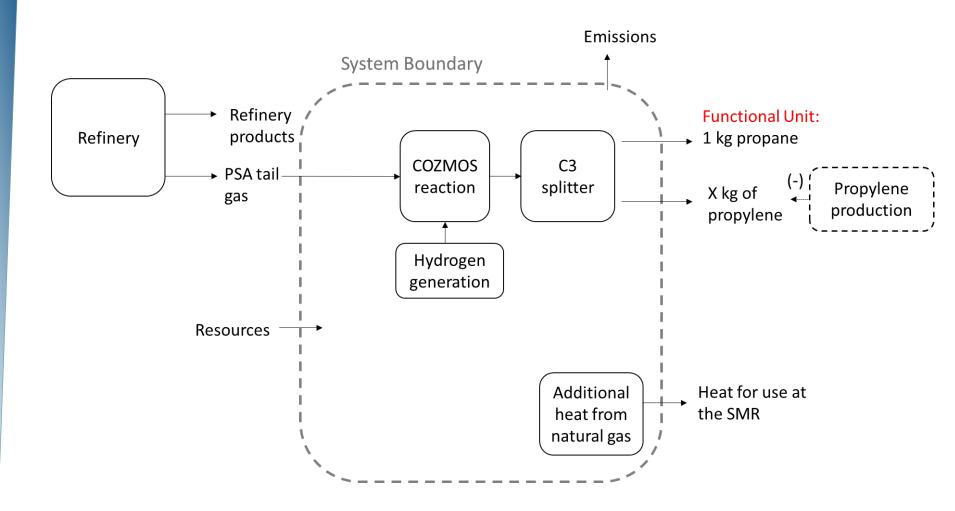


COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

Scenario 2: COZMOS scenario, Tata Steel



COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

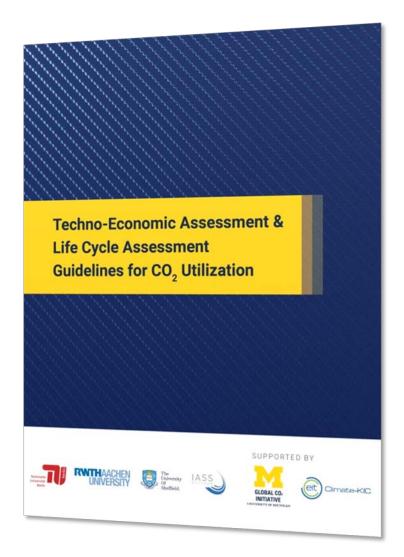

Scenario 3: Reference case, Tupras

Scenario 4: COZMOS scenario, Tupras

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

The Guidelines for LCA & TEA of CCU

Project goal:


- Define a common assessment language to push R&D, investment and commercialization of CCU
- Align LCA and TEA
- Enhance transparency and comparability
- Enable strong acceptance and adoption of guidelines

Available at:

http://umlib.us/CO2Guidelines

DOI: 10.3998/2027.42/145436

ISBN: 978-1-916 4639-0-5

CO2MOS

Conclusions

- LCA allows you to calculate the environmental impacts throughout a product or process life time
- TEA allows you to analyze the technical and economic performance of a process or product
- LCA and TEA can support decisions based on environmental and techno-economic performance
- We are using LCA to identify possible bottlenecks in the process
- We applied a streamlined LCA to potential catalysts to rank them according to their environmental impact
- We are undertaking full LCA and TEA of the COZMOS process in accordance with existing standard references and guidelines

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

Katy Armstrong, Stephen McCord, Peter Sanderson, Peter Styring Department of Chemical & Biological Engineering, The University of Sheffield

Marta Cruz Fernandez, Steven Woolass

Tata Steel

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

CO2MOS

Thank you for your attention

Guillermo Garcia-Garcia G.Garcia-Garcia@Sheffield.ac.uk

UK Centre for Carbon Dioxide Utilisation Department of Chemical & Biological Engineering The University of Sheffield

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

CCUS business models & public policy support

Addressing challenges and realizing opportunities for CCUS

February 2021

elementenergy

Antonia Mattos: Amelia Mitchell: antonia.mattos@element-energy.co.uk amelia.mitchell@element-energy.co.uk

elementenergy

Element Energy, a consultancy focused on the low carbon energy sector

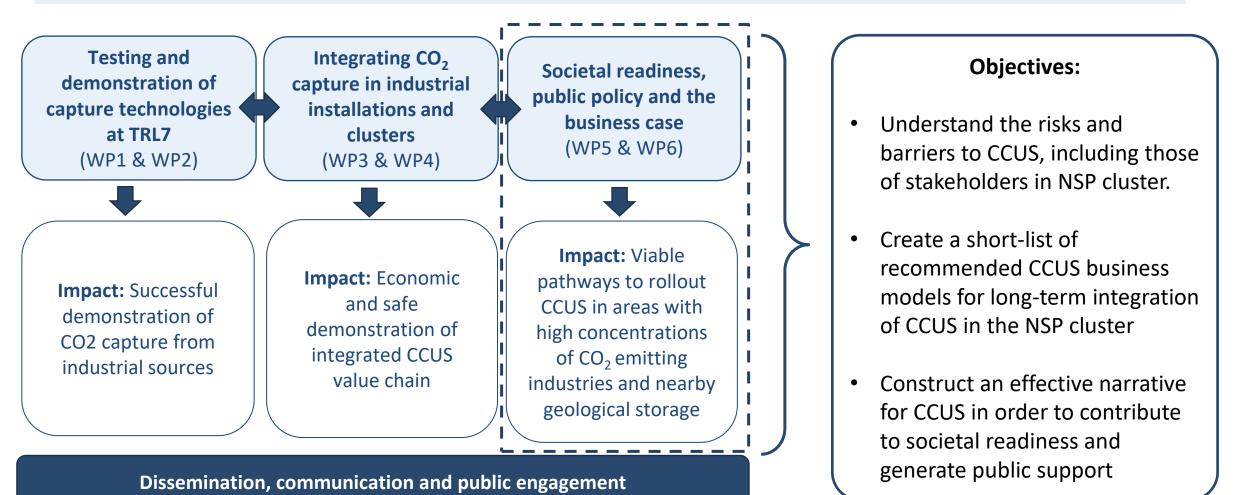
Element Energy covers all major low carbon energy sectors:

elementenergy

Introduction

Risks policy must address

Business model example


CCU policy requirements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418

C4U: Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters (Horizon 2020 Funded Project)

Why are policies and business models needed?

CO₂ capture from industrial emitters

Need to remain financially competitive with sites w/o CCS – need strong revenue model and protection from some risks.

CO₂ capture from power emitters

Need to have certainty on future role in power market and a guaranteed revenue from services provided.



CO₂ transport operators

Need certainty of CO₂ volumes and transport fees, from emitters and/or storers (or protection from cross-chain default risks).

Government and society

Need decarbonisation at lowest cost to society and minimum environmental impact. Need to understand the benefits of CCUS.

CO₂ storage operators

Need certainty of CO_2 volumes and storage fees. Early projects need support with CO_2 leakage liability.

Need regulatory framework for CO₂ accounting and verification of climate benefits. Need development of enduse markets and likely financial support or end-use standards.

Introduction

Risks policy must address

Business model example

CCU policy requirements

	Category	Associated risks and challenges	С	Т	U	S	WIS
Identified risks, challenges & failure factors		Technology performance uncertainty					1/2
		Technology lock-in					
	Technical and operational	Site-specific challenges				-	
		Increased operational complexity					
		Variation in CO ₂ purity grade					
		Maintenance of pipelines					
Recurring factors contributing to project failures		CO ₂ storage well damage					
		High capital investment					
Lack of long-term economic viability		Capital cost uncertainty					
		Opportunity cost (technology lock-in)					
Poor risk management		Poor finance opportunities					
Technical integration and compatibility when scaling up from		Energy cost uncertainty					
demonstration to commercial scale	Economic and	Long investment timescales					
	market	Insufficient value proposition					
Over-reliance on Government subsidies		Reduced competitiveness					
Additional factors specific to full-chain CCUS projects		Carbon leakage (offshoring of emissions)					
		Revenue volatility					
Poor management of cross-chain liabilities and poor risk		T&S monopoly and fee uncertainty					
ownership allocation among project stakeholders		Long-term CO ₂ storage liability					
Poor coordination of construction timescales or poor integration		Policy and regulatory uncertainty					
design between the interfaces of each CCUS segment		Carbon leakage and employment loss risk					
design between the interfaces of each CCUS segment	Political	al CO ₂ price level and uncertainty					
		Stringent conditions of government support					
		Complex permitting processes					
Legend:		Integration risk					
C Capture Segment predominantly affected	Cross chain	Operational interface risk					
T Transportation U Utilisation Segment less affected		Risk allocation					
S Storage		Cross-border					
Source: Element Energy as part of CALLWIDE		Cluster / hub coordination					

Introduction

Risks policy must address

Business model example

CCU policy requirements

Project example - Business model characterisation & assessment

Revenue*	Funding source	Risk Management	Capital	Build additional elements and instruments around revenue model to
 Main revenue model: CfD-like mechanism (or CPF) RAB-like mechanism 	 Exchequer (taxpayer) All industrial 	 Public loan guarantees Public underwriting of operational risks e.g. opex 	Public grantsPublic loansPublic equity	mitigate risks not addressed by <i>revenue</i> <i>model</i> itself. Assess complete business model using step 1 & 2 criteria.
 Cost plus: public operational payments (open book) CO₂ abatement payments (fixed or variable) Green product premium or product CO₂ taxes CCS certificates tradeable, obligated Tax credits tradeable Public procurement of low-carbon products 	 emitters All national emitters Fossil fuel suppliers Gas and/or electricity consumers Purchasers of low carbon products (price promium) 	 Stable policy / long term contracts Insurer / buyer of last resort Price floor / ceiling Compensation for BAU disruption Revenue guarantees* Border adjustments 	 Emitter equity Investor / JV equity Debt / loans (inc Green bonds) Multilateral funds 	 Step 1 criteria: industrial acceptability Capital availability or low cost financing Strength of revenue incentive Industry competitiveness and carbon leakage Flexibility for operational cost uncertainties CO₂ price level and uncertainty Simplicity and transparency for industry
carbon products	(price premium)	requirements:Contractual arrangements eg	 Private - emitter Private - other eg	Step 2 : government acceptability
 Supporting only: CO₂ price avoidance or credits CO₂ utilisation & EOR Energy performance standards Obligation (CCS or industrial decarbonisation) 	 Supporting CO₂ sales for utilisation eg EOR CO₂ tax avoidance 	 take-or-pay, interface agreements, T&S fee regulation Public backstops on cross- chain default Multiple emitters and stores 	JV PPP Public – direct Public – through state-owned enterprise or SPV	 Cost: efficiency promotion Cost: ability to pass costs on Policy track record Speed and simplicity of implementation Ongoing simplicity for government Applicability to industrial sectors
				Applicability to CCS phases

Business model summary example – CfD_c CO₂ certificate strike price

Revenue

- CfD_c on strike price £/tCO₂ for abated CO₂, via tradeable CO₂ certificates
- Offered contract fixed for duration but set annually for new joiners¹

Funding source options

Government: general taxation or levies eg fossil fuel suppliers

Description & discussion

- The emitter is paid the difference between the CO₂ strike price contractually agreed (that needed to cover capture costs) and the prevailing CO₂ market price (e.g. EU ETS). For early projects, strike price may need to be high due to higher risks.
- Cost to government, if well designed, is only that required above the carbon price avoidance to compensate the emitter and protect competitiveness. Efficiency is incentivised, but costs are not passed on to consumers.
- Policy track record and applicability is high, although power CfD is on product price.

Source: Element Energy for BEIS, industrial carbon capture business models 2018

1: Scale-up: negotiation on site by site basis. Roll-out: competitive bidding process.

2: Annual adjustments including linked to fuel prices or CPI-linked https://lowcarboncontracts.uk/payments

Risk mitigation

- Capital loan guarantee in scale-up
- Long term contract on strike price²
- ICC cost backstops/pain-gain sharing

Capital

• *Roll-out*: Emitter equity & low-cost loans

Strike price

Subsidy

Market price e.g. EU ETS

Standard production

costs (inc. margins)

Industrial plant with CO₂ capture

Breakeven point

time

Capture

costs

• *Scale up*: grants or loan guarantees

5 5 5

£/tonne

Industry criteria

Capital availability

Revenue strength

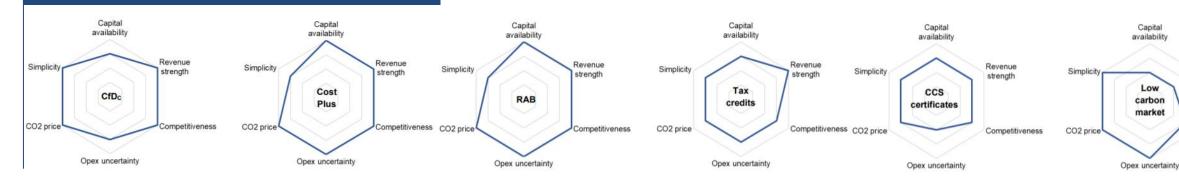
Competitiveness

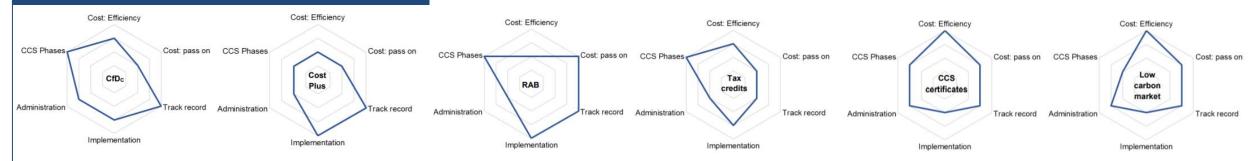
Opex uncertainty

CO₂ price

Simplicity

Government criteria


Cost: efficiency Cost: pass on Track record Implementation Administration Sectors **Phases** CCS specific?


CCUS deployment: Several promising business models were identified for industrial carbon capture, drawing on comparable existing policies

Contract for difference:	Cost plus:	Regulated asset base:	Tradeable tax credits:	CCS certificates:	Low carbon market:
CfD on CO ₂ price relative to	All properly incurred ICC	Public regulation allows	CCS tax credits awarded	Certificates representing	End-use regulation e.g. on
market CO_2 price (e.g. EU	operational costs are	costs to be recovered	\$/tCO ₂ to reduce firms tax	tCO ₂ abated through CCS,	buildings to create a low
ETS) to provide guarantee	reimbursed through	through product prices e.g.	liability (e.g. 45Q) or trade	which can be traded and	carbon market & achieve
of revenue	taxpayer funding	of Hydrogen	with other firms.	emitters have an obligation.	product premium

Acceptability to industry evaluation

Acceptability to government evaluation

Revenue

strength

Competitiveness

Industrial carbon capture

- The key challenge for industrial carbon capture is providing the revenue level and certainty to incentivise industry to decarbonise and unlock capital whilst protecting it from carbon intensive competition, and therefore prevent carbon leakage.
- There are a number of available mechanisms to support the deployment of industrial carbon capture. The key to a successful mechanisms is balancing the private and public sector requirements. A number of key learnings can be taken from projects such as Longship, Lake Charles Methanol and Porthos e.g. financial structure, CCUS value chain construction and use of existing assets.
- Each of the revenue models requires support from a suite of risk management instruments to ensure risks are addressed where possible. This is particularly important for incentivising deployment of early projects where the private sector cannot bear these risks.

CCUS

- In the longer term as CCUS clusters grow and costs and risks reduce, CCUS may be able to transition to an unsubsidised end-state. This assumes either global action on climate or border adjustments for product carbon intensity.
- CCUS requires a business model for the other aspects of the chain, such as CO₂ transport and storage or utilisation. The integration of these business models is key, with cross-chain risks significant for early or isolated projects.
- The Netherlands has implemented a mechanisms in SDE++¹ (similar to a CfD), which is likely to form part of the North Sea Port business models. The NSP will be explored in more detail in our work in the coming 2 years.

Introduction

Risks policy must address

Business model example

CCU policy requirements

Revenue from CCU products: challenges of market uptake & enabling interventions

Competitiveness & Market Potential: products from CO₂ utilisation need to compete with existing products and penetrate markets

Challenges to successful uptake of CCU products Interventions to enable success **Demonstrating product suitability:** Technologies need to be demonstrated at scale to gain investor confidence Funding for innovation & demonstration projects. Products need to meet existing standards and regulations. This can be a lengthy and Facilitating testing & approvals processes. expensive process. Prescriptive standards may prevent approval. Updating of standards to be performance based. Some markets are highly conservative needing further demonstrations over many years. **Developing market interest and product demand:** Increasing awareness and reporting of lifecycle & Procurers may lack awareness or engagement with their Scope 3 emissions. Scope 3 emissions. Procurers may not have awareness of CCU products or the benefits of CCU. There may be a **Clarifying carbon accounting for CCU products.** lack of clarity on how these benefits may be realized through carbon accounting. Use of mandates or standards to increase demand Consumer perception could be a barrier if not managed well, or a driver. for lower emission products. Market drivers are typically not sufficient to justify cost premiums for CCU products. Achieving cost-competitiveness: Funding of linked projects such as renewables, CCU products can be significantly more expensive than conventional fossil-based products green hydrogen and carbon capture to lower costs. (which may be in recite of subsidies). Introducing policies to level the field by recognizing sustainability benefits (performance However, a select few routes are driven by cost-savings or improving the value of products. based). Avoidance of fees or compliance with regulations could become a driver if more ambitious incentives or targets are imposed.

Support for CCU: examples of existing or adaptable support mechanisms

- Funding programmes in the EU (H2020, Innovation Fund), US and member states.
- Private investment initiatives and competitions such as Carbon Xprize

Testing, Approvals & Certifications

- US Clearing House facilitating aviation fuel approvals
- Sustainability Certification
 Schemes & product labelling

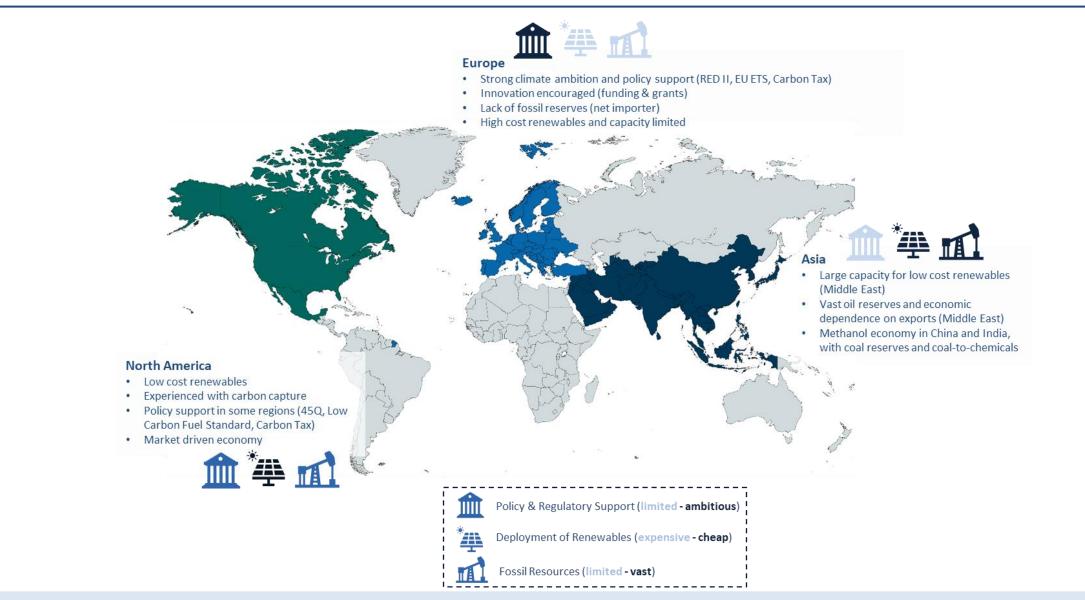
Low Emission Fuels Standards / Targets

- Blending obligations for road transport (EU RED II) and aviation fuels (e.g. Norway)
- Minimum standards (e.g. Californian Low-Carbon Fuel Standard)

ſ	-6	3-
	5	
	\checkmark	-
	~	

Procurement Guidelines

- Standards for public infrastructure projects (e.g. UK BREEAM rating)
- Tender evaluation (e.g. Netherlands CO₂ performance ladder)


- Carbon pricing (ETS or carbon tax)
- Operational subsidies such as Contract for Difference (e.g. Netherlands SDE++)

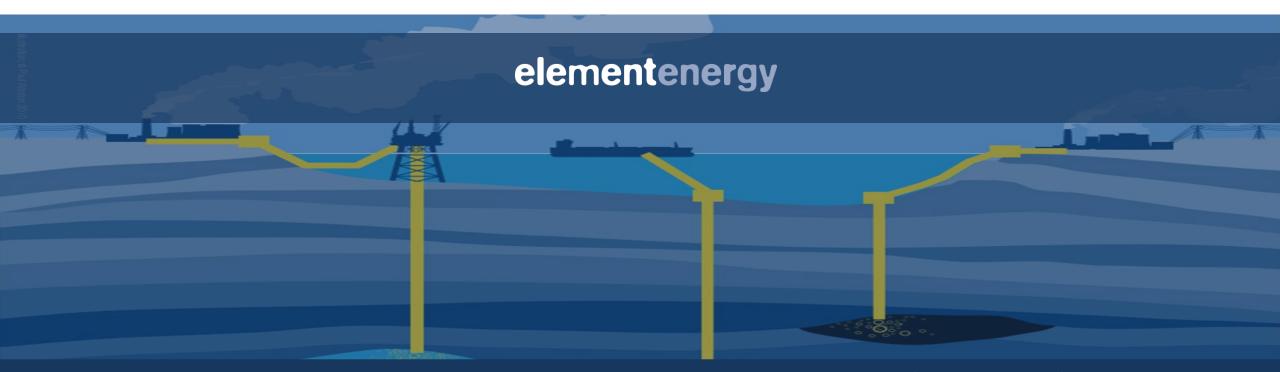
Company Monitoring & Reporting

- Emission reporting obligations (government & investor driven)
- Knowledge sharing & guideline development

Drivers, barriers and enablers for CCU can vary regionally. There may be local niche opportunities where CCU becomes favourable.

Thank you for your listening!

Any questions?



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418

EU disclaimer: The contents of this presentation are the sole responsibility of Element Energy and do not necessarily reflect the opinion of the European Union.

Element Energy is a leading low carbon energy consultancy working in a range of sectors including industrial decarbonisation, carbon capture utilisation and storage (CCUS), hydrogen, low carbon transport, low carbon heat, renewable power generation, energy networks, and energy storage. Element Energy works with a broad range of private and public sector clients to address challenges across the low carbon energy sector.

For further information please contact: <u>CCUSindustry@element-energy.co.uk</u>

www.element-energy.co.uk

Perception of CO₂-based fuels and their production in international comparison

Linda Engelmann, M.A. HCIC | Chair of Communication Science RWTH Aachen University

engelmann@comm.rwth-aachen.de

Introducing the project

Closing the loop: from CO₂ to fuel

Human-Computer Interaction Center

Direct electrocatalytic conversion of CO₂ into chemical energy carriers in a co-ionic membrane reactor

ecocoo.eu

Project aim

- set up a CO₂ conversion process using renewable electricity and water steam to directly produce synthetic jet fuels with balanced hydrocarbon distribution to meet the stringent specifications in aviation
- process is compact, modular quickly scalable and flexible, thus, process operation and economics can be adjusted to renewable energy fluctuations
 - → technology will enable to store more energy per processed CO₂ molecule and therefore to reduce GHG emissions per jet fuel ton produced from electricity at a substantial higher level

Perception of CO_2 -based fuels and their production in international comparison L. Engelmann 16.02.2021

Integration of societal acceptance and perception into sustainable technology development

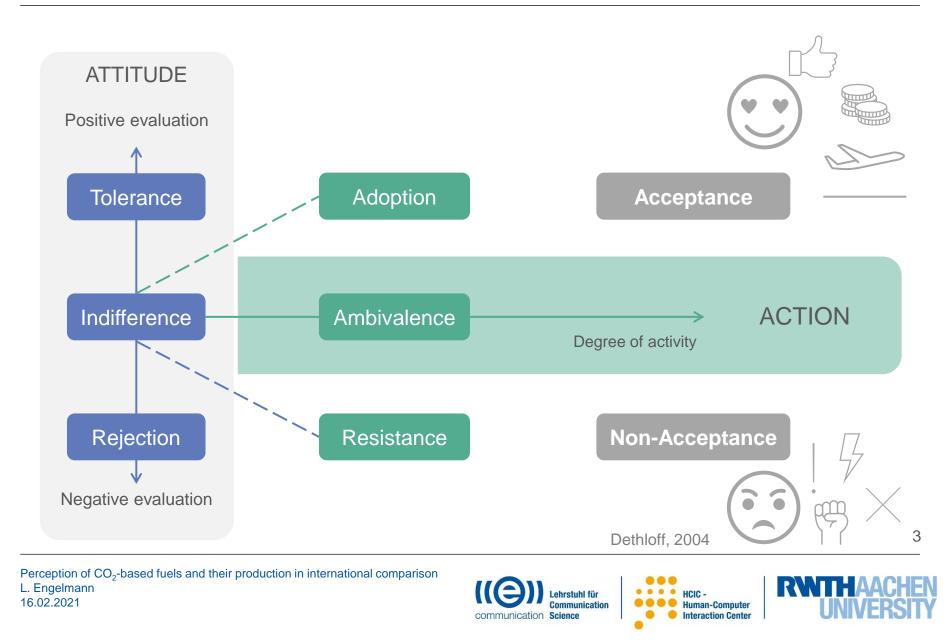
Consideration of public perceptions and acceptance from the very beginning of the developmental process

Informing technical designers about acceptance barriers

Education of the public and increase of awareness

Development of communicative strategies

Perception of CO_2 -based fuels and their production in international comparison L. Engelmann 16.02.2021



e

Previous Research

- Protest potential against CCS is impacted by risk and benefit perceptions of CCS (Wallquist et al., 2012)
- Perception of mattresses as a CO2-based product is linked to health and environmental risk perception (Arning et al., 2018)

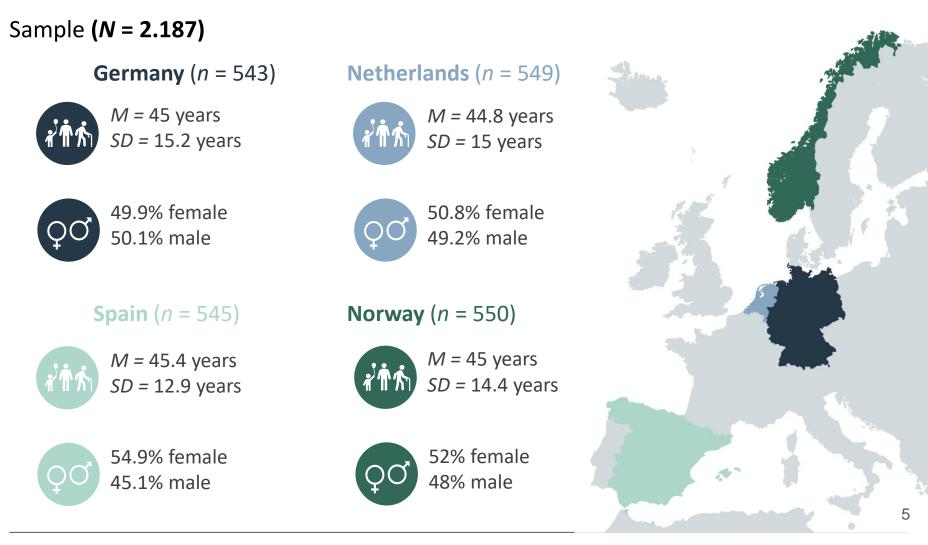
- Technical *infrastructure* and *production processes*
- CO₂-based jet fuel as end-product

Target groups laypeople, technical experts, industrial stakeholders, policy makers کرنے) Methods Mixed method approach

interviews, surveys

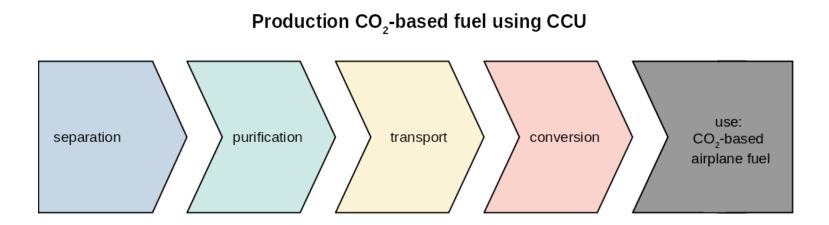
e (

Perception of CO₂-based fuels and their production in international comparison L. Engelmann 16.02.2021



International survey on CO₂-based aviation fuels

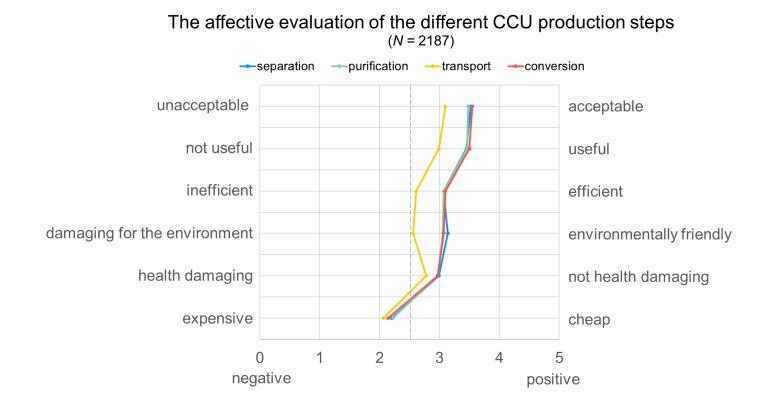
Perception of CO₂-based fuels and their production in international comparison L. Engelmann 16.02.2021



HCIC -Human-Computer Interaction Center

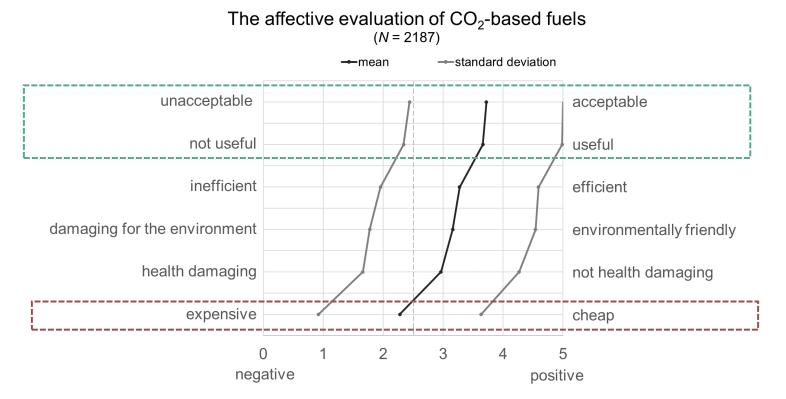
Assessment of production and product

Perception of CO_2 -based fuels and their production in international comparison L. Engelmann 16.02.2021



Differences in evaluation for production steps

Generally, the production steps are perceived as being acceptable and useful. However, people do think it will be expensive.


Perception of CO₂-based fuels and their production in international comparison L. Engelmann 16.02.2021

ür ation HCIC -Human-Computer Interaction Center

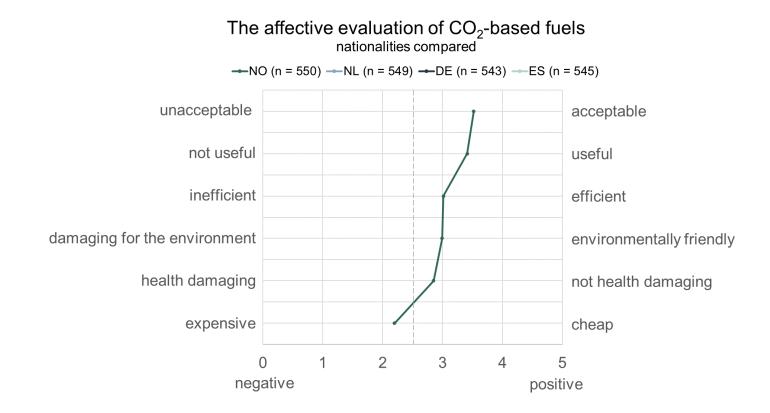
Evaluation of the end-product CO₂-based jet fuel

Perception of CO_2 -based fuel:

>>>

Rather acceptable, useful, efficient, environmentally and health friendly, assessment of price as rather expensive

Perception of CO_2 -based fuels and their production in international comparison L. Engelmann 16.02.2021

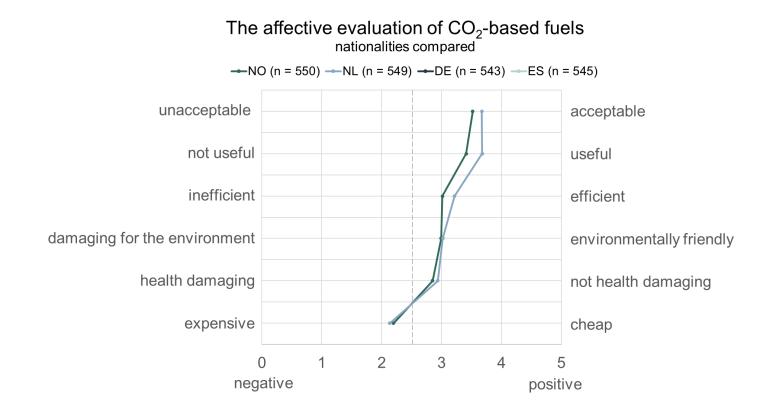


e

Evaluation of the end-product CO₂-based jet fuel **National differences**

>>>The affective evaluation of the end-product of CO₂-based fuels was least positively perceived by the Norwegians,...

Perception of CO₂-based fuels and their production in international comparison L. Engelmann 16.02.2021

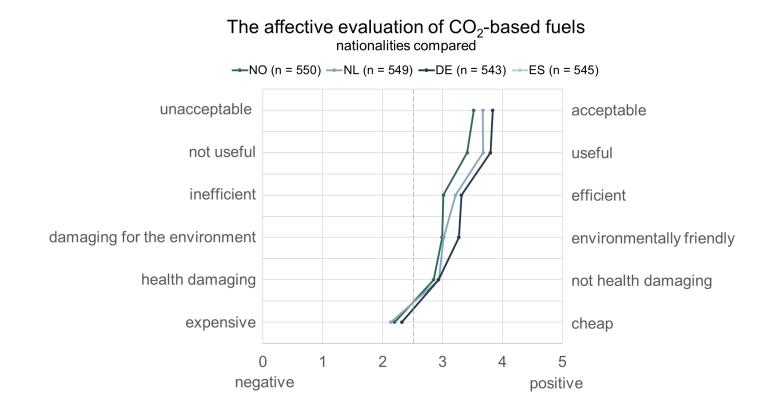


HCIC -

Evaluation of the end-product CO₂-based jet fuel **National differences**

>>>The affective evaluation of the end-product of CO₂-based fuels was least positively perceived by the Norwegians, followed by the Dutch,...

Perception of CO₂-based fuels and their production in international comparison L. Engelmann 16.02.2021

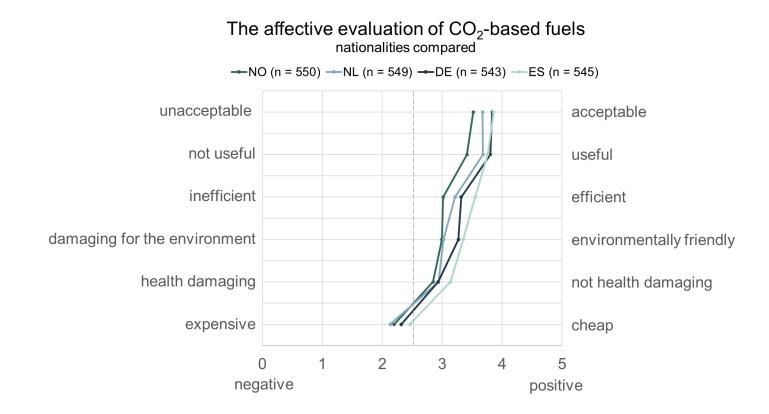

HCIC -

Human-Computer

Evaluation of the end-product CO₂-based jet fuel National differences

The affective evaluation of the end-product of CO_2 -based fuels was least positively perceived by the Norwegians, followed by the Dutch, the Germans,...

Perception of CO_2 -based fuels and their production in international comparison L. Engelmann 16.02.2021


HCIC -

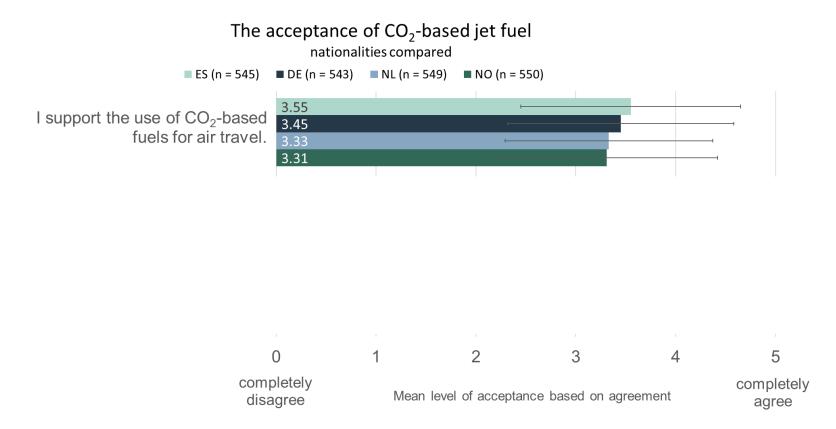
Human-Computer Interaction Center

Evaluation of the end-product CO₂-based jet fuel National differences

The affective evaluation of the end-product of CO₂-based fuels was least positively perceived by the Norwegians, followed by the Dutch, the Germans, and finally the Spaniards.

Perception of CO_2 -based fuels and their production in international comparison L. Engelmann 16.02.2021

HCIC -


Human-Computer

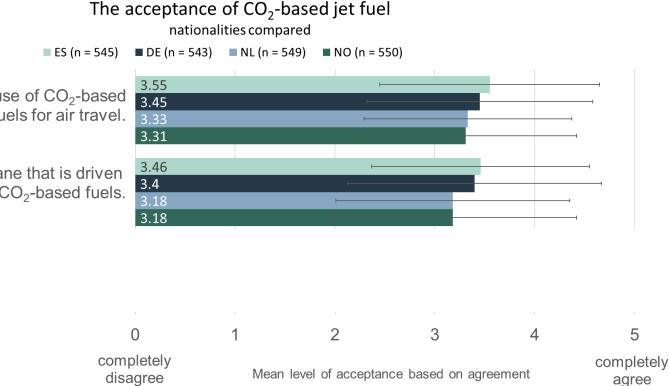
Interaction Center

12

Acceptance of CO₂-based jet fuel National differences

13

Perception of CO₂-based fuels and their production in international comparison L. Engelmann 16.02.2021


HCIC -

Human-Computer

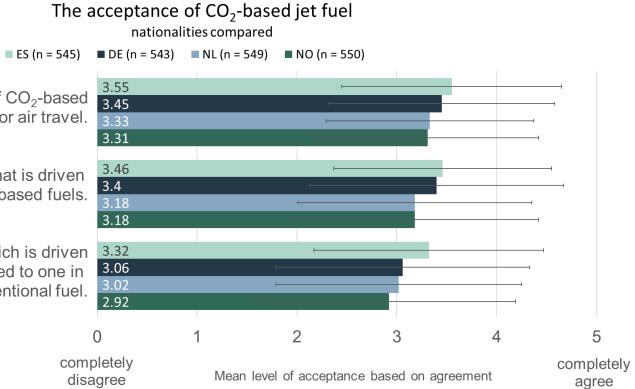
Interaction Center

Acceptance of CO₂-based jet fuel National differences

I support the use of CO₂-based fuels for air travel.

I would fly in an airplane that is driven with the help of CO_2 -based fuels.

14


Perception of CO₂-based fuels and their production in international comparison L. Engelmann 16.02.2021

HCIC -Human-Computer Interaction Center

Acceptance of CO₂-based jet fuel National differences

e

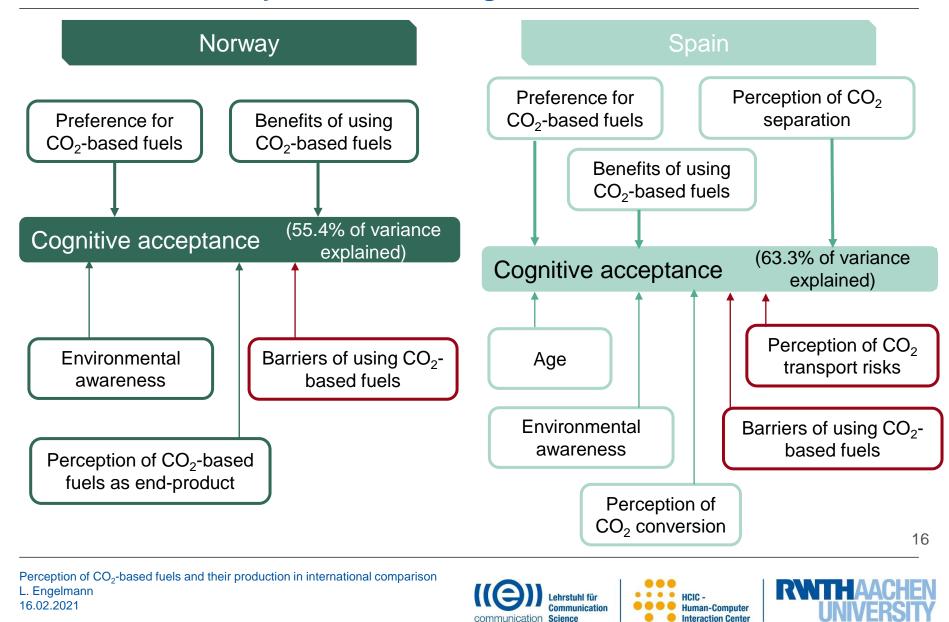
I support the use of CO₂-based fuels for air travel.

I would fly in an airplane that is driven with the help of CO_2 -based fuels.

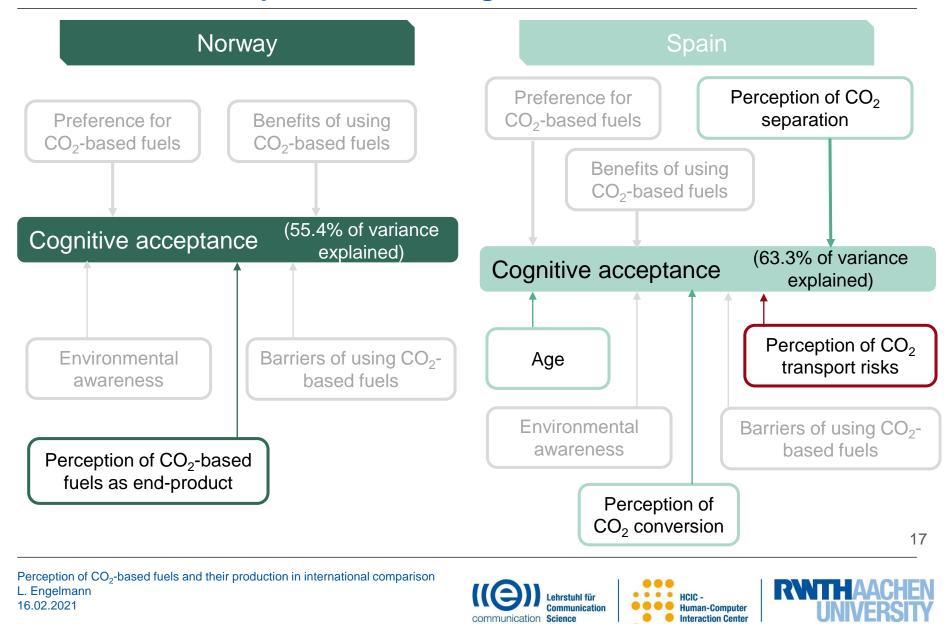
I would prefer a flight which is driven by CO₂-based fuels compared to one in a plane that is driven by conventional fuel.

The greatest approval and willingness to use CO_2 -based fuel existed among Spanish participants, followed by Germans, Dutch and Norwegian people.

15


HCIC -

Human-Computer Interaction Center


Differences in acceptance influencing factors

Differences in acceptance influencing factors

Outlook: Communication and information strategies

What increases or decreases acceptance?

Perception of CO_2 -based fuels and their production in international comparison L. Engelmann 16.02.2021

Lehrstuhl für communication

Thank you for your attention!

Human and societal dimensions

Dr Niall Dunphy, University College Cork

WPDunphy

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884266

@realise-ccus | www.realiseccus.eu | 1

REALISE project overview

- Demonstrating a refinery-adapted cluster-integrated strategy to enable full-chain CCUS implementation
- Horizon 2020 funded project (LC-SC3-NZE-5-2019-2020)
- 3-year duration commenced May 2020
- Working to develop means to capture up to 90 % of CO₂ from multiple sources in operating refineries

www.realiseccus.eu 🔰

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884266

Socio-political dimension of decarbonization

- Achieving the decarbonization of Europe is a key goal of the European Green deal.
- The required energy and industrial transition will both necessitate, and result in, a substantial societal transformation.
- Citizens have a crucial role to play in this transition, indirectly by accepting, supporting or resisting changes and thus influencing other policy actors or directly by consenting or refusing policy options in democratic decision-making processes.

Socio-political considerations within REALISE

- The technical and geological aspects of a CCS project are of course the primary focus of the planning and implementation phases.
- However, REALISE recognizes the importance of understanding (and appreciating) the social context of prospective CCS projects.
- Specific package of work which seeks to develop and in-depth understanding of the societal, socio-political and commercial contexts of CCS deployment.

WP4 Societal, socio-political and commercial context

Task 4.1 Education and public engagement best practice

Review of EPE practices

Task 4.4 Industrial context analysis

Engagement of key CCS actors through an industry club

Task 4.2 Social acceptability, societal impact

Co-development and trialing of EPE programme

Task 4.5 Public outreach activities and life-long learning

Contribute to improved societal readiness through outreach

Task 4.3 Socio-political context analysis

Exploring socio-political lessons learned from global CCS projects

Task 4.6 Synthesis report on societal readiness

T4.1 Education & public engagement best practice

- Comprises a critical review of education and public engagement (EPE) associated with large energy and related infrastructure.
- It is intended to work towards development of a framework for social acceptance of deploying CCS at an industrial site.
- Key examples of EPE identified through a literature search and via partners' networks using a snowballing approach.

T4.1 Education & public engagement best practice

- Seven EPE case studies characterised through a comprehensive desk study coupled with use of targeted informants.
 - CO2CRC Otway Project, Australia
 - Jänschwalde CCS Project, Germany
 - San Cristóbal Mine, Bolivia
 - Block Island Wind Farm, USA

- Portsmouth Energy Recovery Facility, UK
- Barendrecht CCS Project, Netherlands
- Tomakomai CCS Demonstration Project, Japan
- The resultant report details the case studies, outlines methods adopted, explores key challenges, and presents best practices.

Need for acceptance

- The deployment of the major infrastructure needed to realise the required energy and industrial transition can only be successful with social acceptance.
- This means acceptance by the public generally (of the technology), but also, and critically acceptance by the community which will play host to the infrastructure.
- However, the strong public opposition faced by many projects threatens to significantly slow down this transition

Dunphy, N. P., Revez, A., Gaffney, C., & Lennon, B. (2017). Intersectional Analysis of Perceptions and Attitudes Towards Energy Technologies. Deliverable 3.3 of the ENTRUST H2020 project. https://doi.org/10.5281/zenodo.3479301

Social acceptance ... (or)

- The term 'social acceptance' with respect to infrastructure deployment, often implies (whether by design or otherwise) a passive acquiescence of a decision that has already been made.
- Such activities are usually concerned more with advocacy rather than decisionmaking or decision-making processes.
- So called DAD Model Decide, Announce, Defend
- (or Decide, Announce Defend, Abandon ... DADA !)

Dunphy N.P., Lennon, B., Quinlivan, L., Velasco Herrejon, P., Curran, R. (2021). Critical review of Education and Public Engagement initiatives. Deliverable 4.1 of the REALISE Horizon 2020 project.

(or) ... societal acceptability

- On the other hand, 'social acceptability' refers to a project itself, it infers an effort to design (and implement) a project to be (more) agreeable to social stakeholders.
- It suggests (and arguably requires) a more participatory approach.
- This is an implied acknowledgement of societal stakeholders' legitimacy, provision for them to be earlier, and understanding that they would (be allowed to) provide real input into decision-making.

Dunphy N.P., Lennon, B., Quinlivan, L., Velasco Herrejon, P., Curran, R. (2021). Critical review of Education and Public Engagement initiatives. Deliverable 4.1 of the REALISE Horizon 2020 project.

Acceptability ... 'fairness'

Perceptions of fairness play a crucial role in determining the social acceptability of infrastructure projects.

- Procedural justice: the way in which the process is structured and implemented.
- Distributional justice: how benefits and ills of the project are distributed .
- Recognition justice: acknowledgement, recognition and respect.

Lennon, B., Dunphy, N. P., & Sanvicente, E. (2019). Community acceptability and the energy transition: a citizens' perspective. Energy, Sustainability and Society, 9(35). https://doi.org/10.1186/s13705-019-0218-z

Jenkins, K., McCauley, D., Heffron, R., Stephan, H., & Rehner, R. (2016). Energy justice: A conceptual review. Energy Research & Social Science, 11, 174–182. https://doi.org/10.1016/j.erss.2015.10.004

- 1. You cannot engage too early
- Early and open channels of communication with the public helps build mutual trust between process leaders and the community.
- Projects benefit when stakeholders across all groups are involved in the process.
- Ideally, the local community should be involved in the process of location selection, permitting, and policy-making, as soon as a project is proposed

Dunphy N.P., Lennon, B., Quinlivan, L., Velasco Herrejon, P., Curran, R. (2021). Critical review of Education and Public Engagement initiatives. Deliverable 4.1 of the REALISE Horizon 2020 project.

- 2. Value of community liaisons
- Useful to hire staff who either already have good relations with local communities, or who have the skills to develop trusting relationships with communities.
- Having someone who is a 'known entity' with at least some members in the local community is vital in building trust.
- Can also ensure issues can be dealt with promptly and before they evolve into problems.

Dunphy N.P., Lennon, B., Quinlivan, L., Velasco Herrejon, P., Curran, R. (2021). Critical review of Education and Public Engagement initiatives. Deliverable 4.1 of the REALISE Horizon 2020 project.

- 3. Advantages of blended approach to communication
- Complement official formal communication with informal modes to ensure effective outreach and build/maintain trust with communities
- A blended approach to communication can contribute to fostering what Dwyer and Bidwell (2019) describe as a "chain of trust" between the process leaders and local stakeholders.

Dunphy N.P., Lennon, B., Quinlivan, L., Velasco Herrejon, P., Curran, R. (2021). Critical review of Education and Public Engagement initiatives. Deliverable 4.1 of the REALISE Horizon 2020 project.

Dwyer, J., & Bidwell, D. (2019). Chains of trust: Energy justice, public engagement, and the first offshore wind farm in the United States. Energy Research and Social Science, 47(January), 166–176. https://doi.org/10.1016/j.erss.2018.08.019

- 4. First impressions count
- Build trust through early, open & responsive communication with communities.
- Actions are interpreted through the lens of relationships a poor relationship could lead actions to be seen as hostile, whereas a hands-off approach might lead to perceptions of having something to hide.

- 5. Provide good quality information
- Availability of high-quality tailored information builds trust and pre-empts issues.
- Effective (and trusted) communications promotes credibility of both the project itself and the developer.
- Important to develop an understanding of target audiences and implement a communications strategy which reflects their cultural and other specificities.

- 6. Listening is also part of communication
- Educating and informing can help improve understanding on particular issues, however on its own it is a very limited strategy and minimizes the values of the process.
- Real engagement requires a two-way flow of information, as it encourages the public to voice their views and interests to inform decisions.

Dunphy N.P., Lennon, B., Quinlivan, L., Velasco Herrejon, P., Curran, R. (2021). Critical review of Education and Public Engagement initiatives. Deliverable 4.1 of the REALISE Horizon 2020 project.

Next steps

- Building on the developed knowledge, an EPE programme will be co-designed with community stakeholders for the Cork Harbour case study.
- The approach will take an intersectional approach, considering the sociodemographic specificities of the relevant communities, *e.g.*, gender, life stage.
- Key elements will be trialed in local communities to evaluate effectiveness, to identify areas of potential improvement, and to ascertain transferability of the programme.

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

Dr Niall Dunphy Director, Cleaner Production Promotion Unit University College Cork

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884266

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/e - Eindhoven - 16-17 February 2021

Session 2B (chairperson Vesna Middelkoop)

15:00-15:20 Dr. M. Sleczkowski and Dr. Pablo Ortiz - Turning gas separation membranes green with biobased block copolymers

15:20-15:40 Dr. A. Benedito - CARMOF Project: a CO₂ capture demonstrator based on membrane and solid sorbents hybrid process

15:40-16:00 Dr. R.H. Heyn - Introduction to the COZMOS project

16:00-16:20 Dr. L. Petrescu - Converge technology for efficiency methanol production with negative CO₂ emissions: energy and environmental analysis

Bio-based copolymers for membrane end products for gas separations

Bio-based Industries Consortium

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 887075.

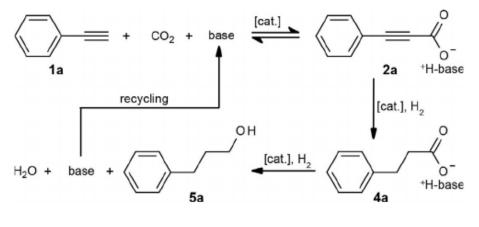
The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium

Turning gas separation membranes green with biobased block copolymers

International workshop on CO_2 capture and utilization

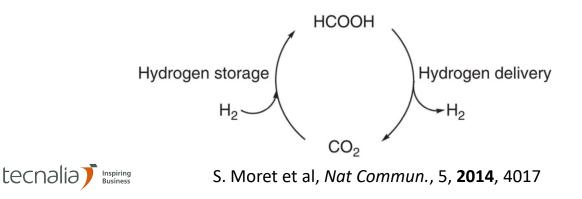
TU/e Eindhoven, 16-17th February 2021 Dr. Marcin Ślęczkowski and Assoc. Prof. dr. Katrien Bernaerts


> m.sleczkowski@maastrichtuniversity.nl katrien.bernaerts@maastrichtuniversity.nl


Dr. Pablo Ortiz

pablo.ortiz@tecnalia.com

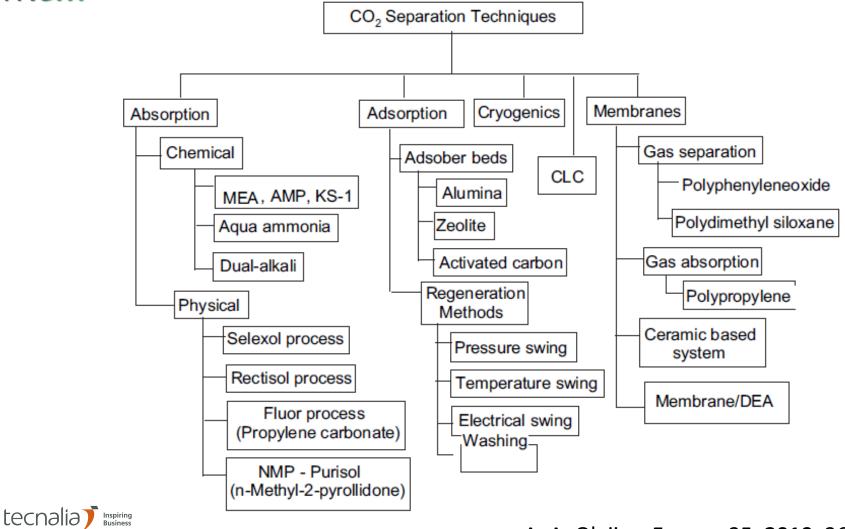
The present publication reflects only the author's views. The Commission is not responsible for any use that may be made of the information contained therein.


Bio Co CO₂ recognized as useful raw material. Mem

T. Wendling et al, Chem. Eur. J., 24, 2018, 6019-6024

https://www.covestro.com/en/sustainability/lighthouse-projects/co2-dreams

De Novo metabolic conversion of electrochemically produced formate into hydrocarbons


www.eforfuel.eu

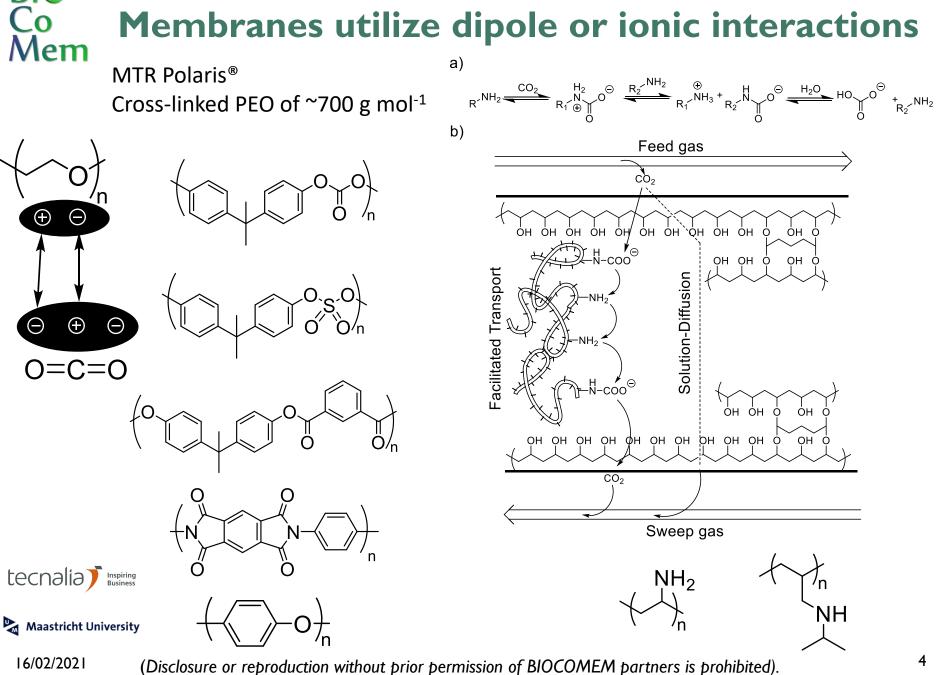
🗞 Maastricht University

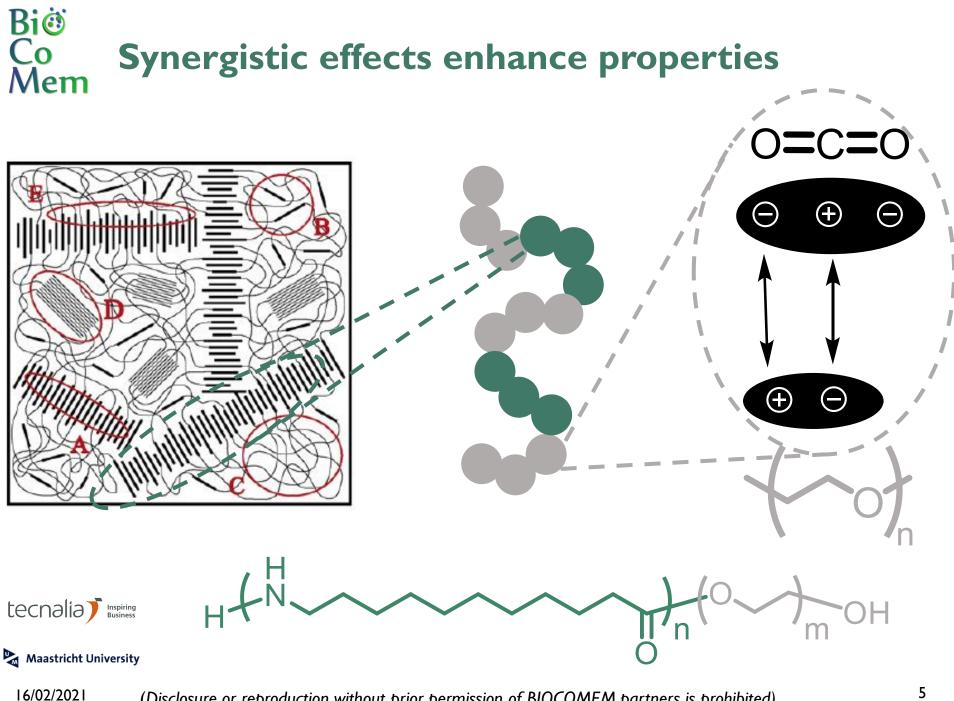
16/02/2021

(Disclosure or reproduction without prior permission of BIOCOMEM partners is prohibited).

Multiple separation techniques are available.

A. A. Olajire, Energy, 35, 2010, 2610-2628


🗞 Maastricht University

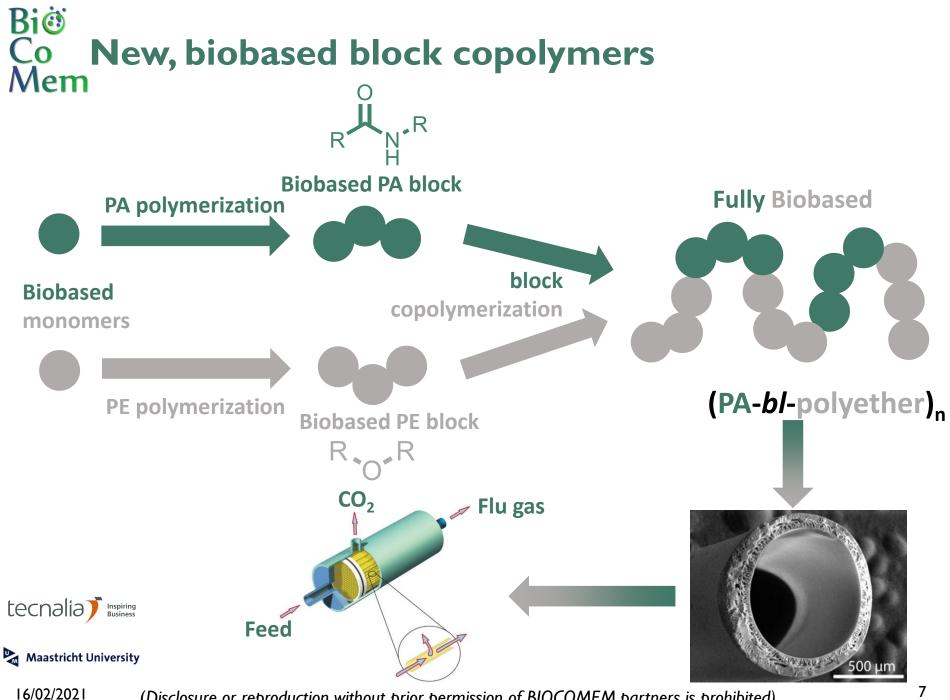

Bi@ Co Mem

16/02/2021 (Disclosure or reproduction without prior permission of BIOCOMEM partners is prohibited).

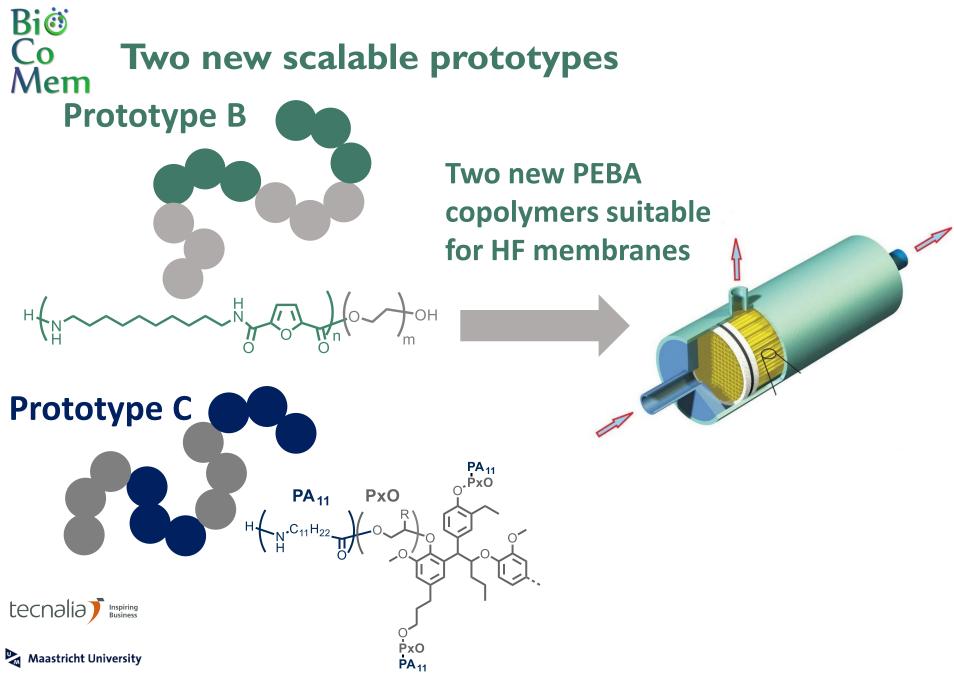
Membranes utilize dipole or ionic interactions

Bi🞯

(Disclosure or reproduction without prior permission of BIOCOMEM partners is prohibited).

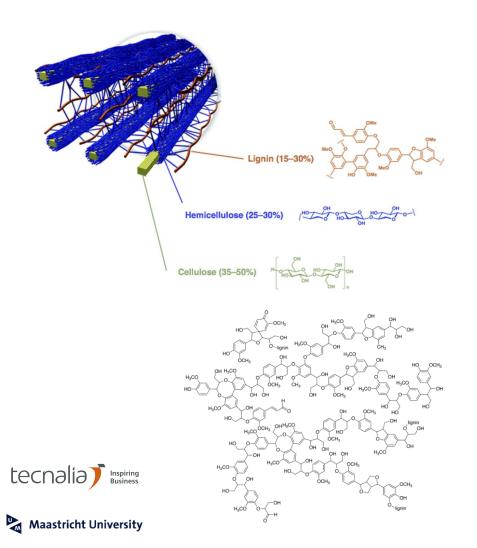

Bi Co Mem Objectives WP3 BioCoMem

Develop bio-based polyether-b-polyamide (PEBA) copolymers as precursors for gas separation membranes at TRL 5, with


- compared to commercially available PEBA PA₁₁-b-PEO
 - higher processability into monolithic hollow fiber membrane (i.e. solubility)
 - higher bio-based content
- additional performance, like
 - higher gas separation performance and/or
 - higher resistance to chemical attack (reversible crosslinking)

Naastricht University

(Disclosure or reproduction without prior permission of BIOCOMEM partners is prohibited).


16/02/2021

(Disclosure or reproduction without prior permission of BIOCOMEM partners is prohibited).

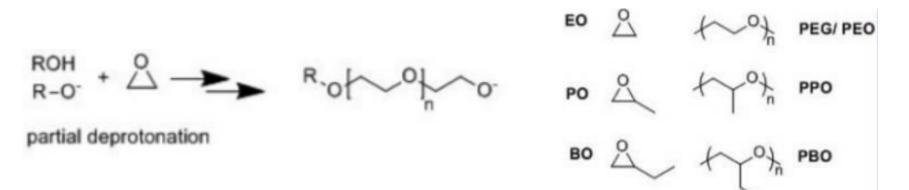
Lignin overview

Characteristics:

- Availability
- Aromatic content

Currently lignin:

- Low solubility in organic solvents
- Low compatibility with other reagents
- Heterogeneous
- Polydisperse
- Low reactivity


Ways to overcome drawbacks:

- Using mild isolation techniques
- Depolymerizing lignin
- Fractionating lignin (solvent extraction)
- Chemically modifying it

16/02/2021

Anionic ROP of oxiranes

Anionic ROP of oxiranes using lignin as initiator

150-330°C 6-40 bar Side products Bad odor

tecnalia Inspiring Business

🗞 Maastricht University

Cellul. Chem. Technol., 2016, 50, 941; Macromol. Mater. Eng., 2005, 290,1009; Ind. Eng. Chem. Res., 2009, 48, 2583

Cationic ROP of oxiranes using lignin as initiator

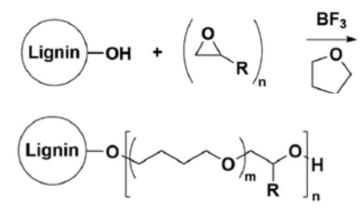
tecnalia Inspiring Business

WO2020/109460A1; Polym. Chem., 2020, 11, 7362-7369

Maastricht University

30/11/2020

Lignin screening



Maastricht University

30/11/2020

Initial screening of the reaction conditions

Parameters

- Oxirane
- Concentration of lignin
- Ratio butylene oxide/lignin OH

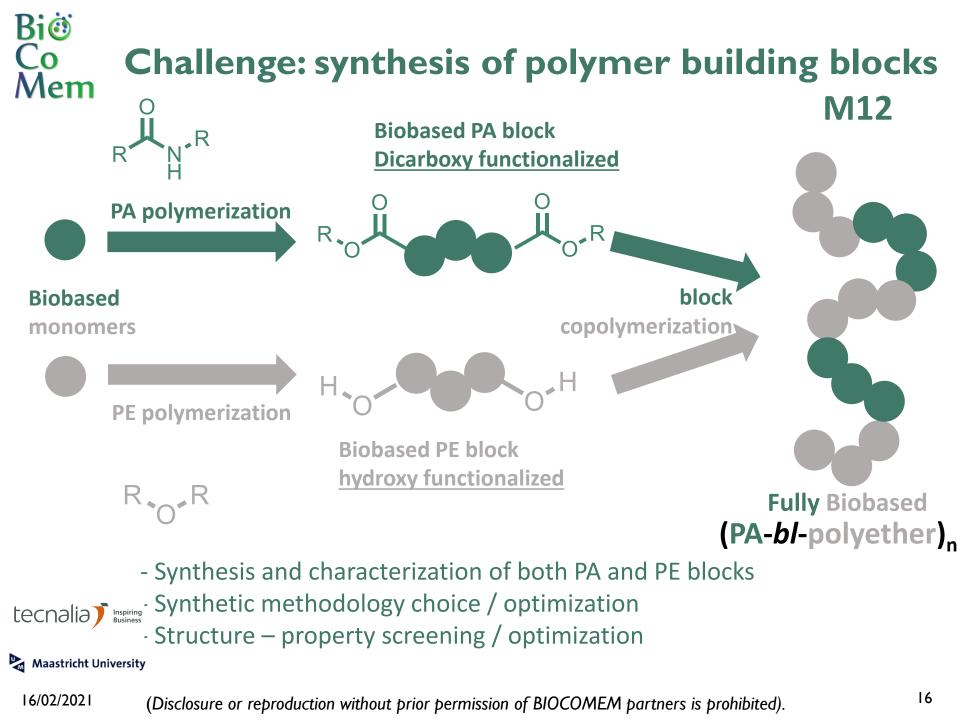
Results

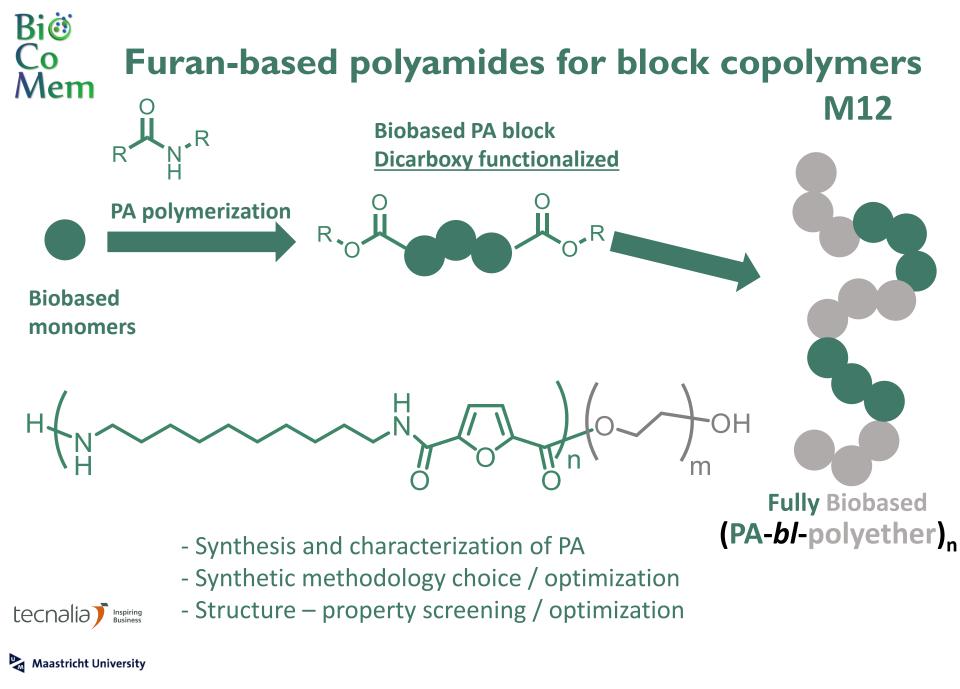
- Reproducibility
- Viscosity
- Molecular weight
- Polydispersity
- OH number

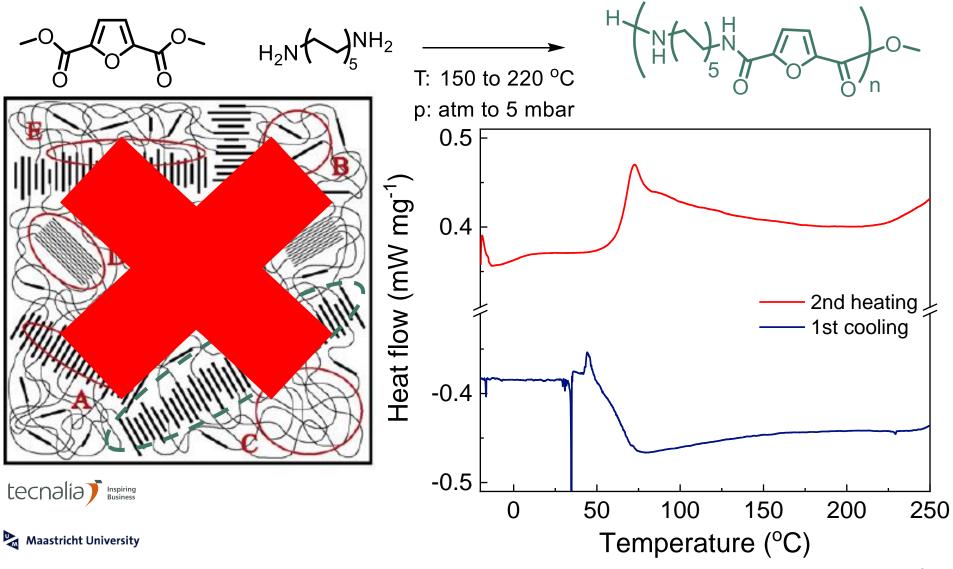
Naastricht University

30/11/2020

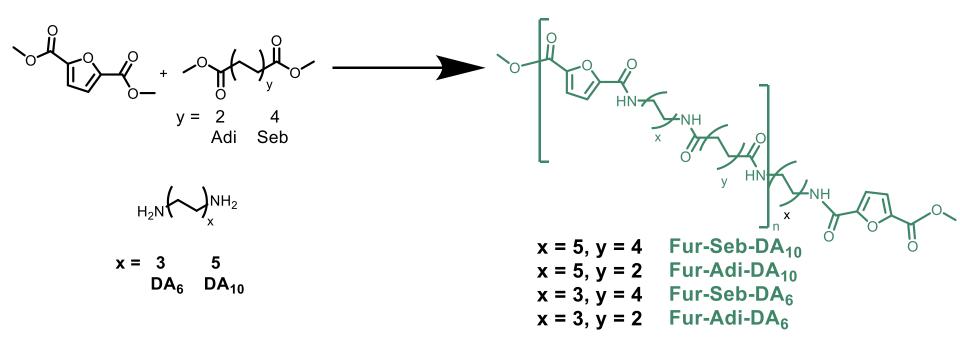
Characteristics


Delivery of 3 LBP to the University of Maastricht


- 3x 50g
- Liquid/viscous
- From 2 different lignins
- M_w: 4000-10000 g/mol
- Lignin content (%): 20-28
- OH number: 86-110 mg KOH/g

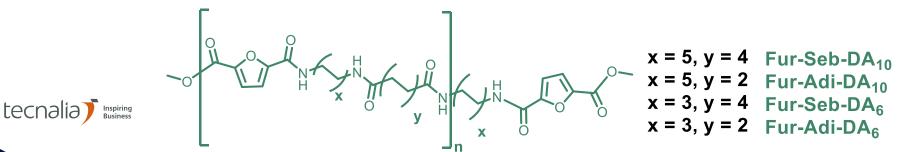


Naastricht University



Bi Co Mem No melting transitions in furan-only polyamide

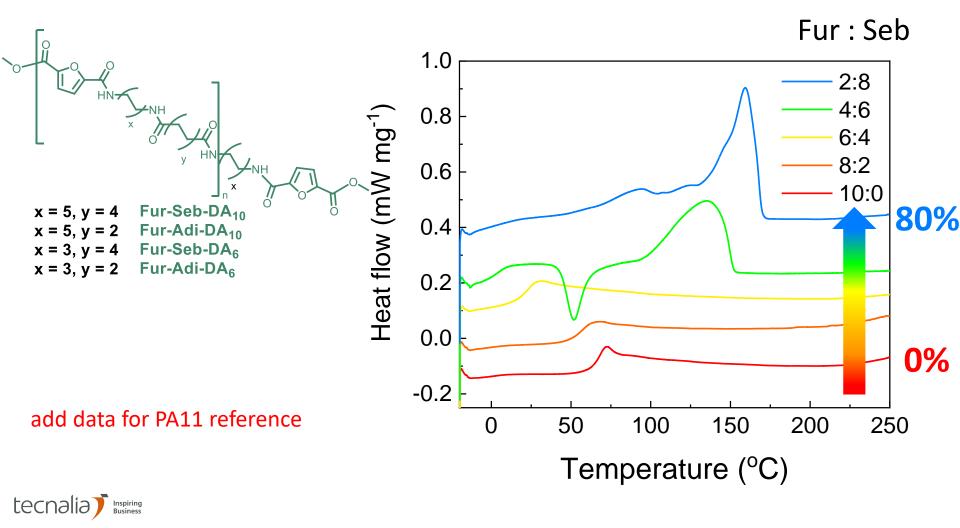
Bi Co Library of copolyamides with linear comonomers Mem



Naastricht University

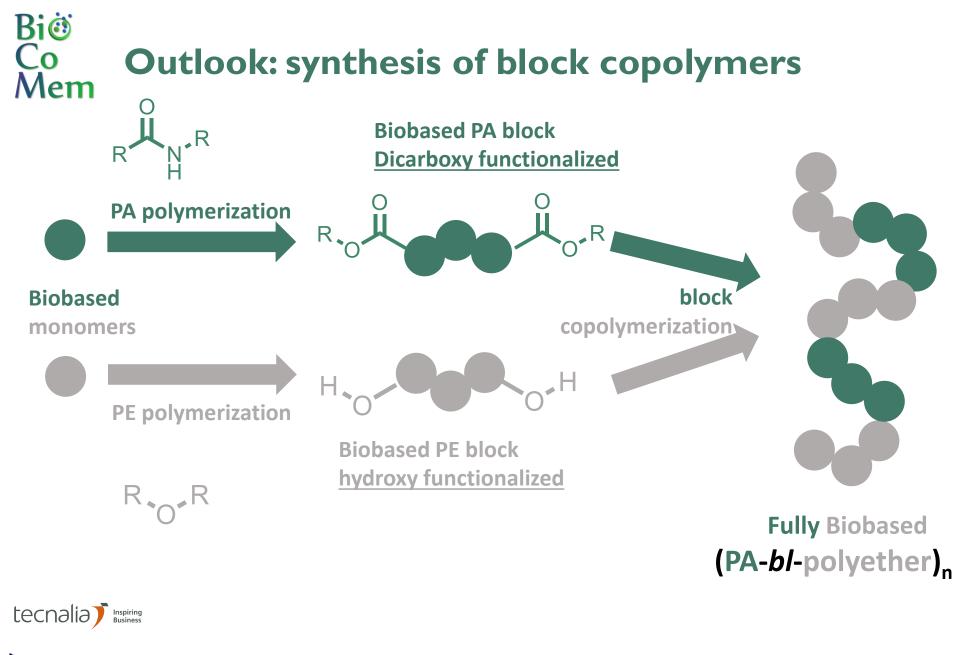
Bi© Co Mem

Desired molecular weight and AV are achieved


Feed			Results					
Furan	Sebacate	Adipate	AV	Calculated M _n [g / mol]	M _n (GPC)	Ð (GPC)		
1	0		92	950				
0.8	0.2	0	112	900	4500	1.8		
0.6	0.4		93	1000	3500	1.9		
0.4	0.6	0	n/a	n/a	2500	2.1		
0.2	0.8		91	950	2000	2.2		
1		0	92	950				
0.8		0.2	98	950	3000	2.1		
0.6		0.4	93	950	2000	2.2		
0.4		0.6	102	1000	3000	2.3		
0.2		0.8	94	1050	2000	2.4		

Naastricht University

16/02/2021


Bi Co Mem Meting transitions recognized in copolyamides

Naastricht University

Bi Co Mem	Furan	Sebacate	Adipate	<i>T_q</i> [°C]	<i>T_m</i> [°C]
Co	1	0	0	57	n
Mem	0.8	0.2		52	n
	0.6	0.4	0	15	n
DA10	0.4	0.6		1	136
r	0.2	0.8		?	159
	1	0	0	57	n
	0.8	0	0.2	30	n
HN	0.6	0	0.4	17	149
	0.4	0	0.6	0	168
	0.2	0	0.8	?	218
-	`				
x = 5, y = 4 Fur-Seb-DA ₁₀ öö x = 5, y = 2 Fur-Adi-DA ₁₀	1	0	0	90	n
x = 3, y = 4 Fur-Seb-DA ₆	0.8	0.2	0	43	n
x = 3, y = 2 Fur-Adi-DA ₆	0.6	0.4	0	36	n
	0.4	0.6	0	9	148
add data fan DA11 nafanan ac	0.2	0.8	0	?	174
add data for PA11 reference	1	0	0	90	n
DA6	0.8	0	0.2	57	n
	0.6	0	0.4	38	n
	0.4	0	0.6	28	164
Maastricht University	0.2	0	0.8	?	212

16/02/2021

Naastricht University

16/02/2021

Bio-based copolymers for membrane end products for gas separations

Bio-based Industries Consortium

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 887075.

The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium

Turning gas separation membranes green with biobased block copolymers

International workshop on CO_2 capture and utilization

TU/e Eindhoven, 16-17th February 2021 Dr. Marcin Ślęczkowski and Assoc. Prof. dr. Katrien Bernaerts

> m.sleczkowski@maastrichtuniversity.nl katrien.bernaerts@maastrichtuniversity.nl

Dr. Pablo Ortiz

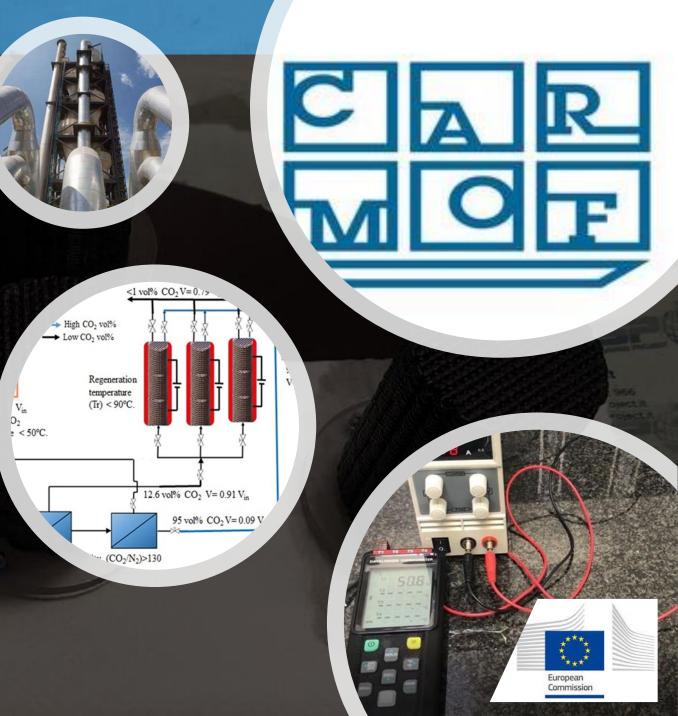
pablo.ortiz@tecnalia.nl

The present publication reflects only the author's views. The Commission is not responsible for any use that may be made of the information contained therein.

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/E - EINDHOVEN - 16-17 FEBRUARY 2021

Adolfo Benedito AIMPLAS (16&17 February)

New process for efficient CO2 capture by innovative adsorbents based on modified carbon nanotubes and MOF materials. H2020-NMBP-20-2017



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760884. This publication reflects only the author's view and that the Commission is not responsible for any use that may be made of the information it contains.

CARMOF Project

TAILOR-MADE 3D PRINTED STRUCTURES BASED ON CNT AND MOF MATERIALS FOR EFFICIENT CO2 CAPTURE

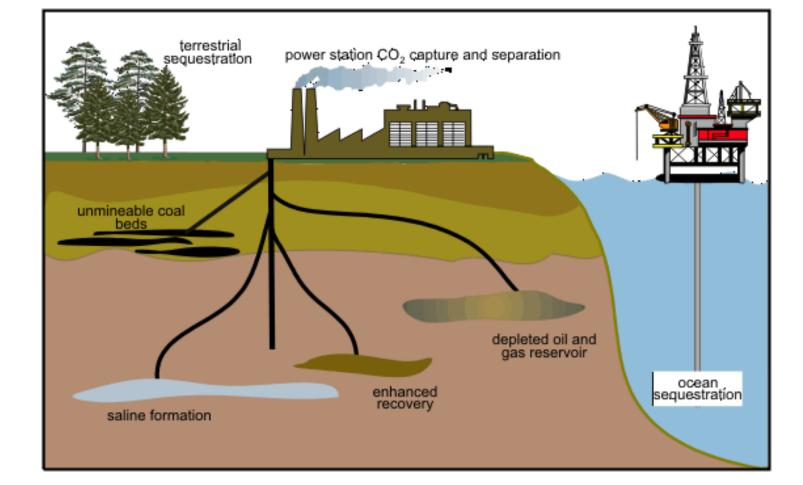
CARMOF is developing a hybrid CO₂ process combining **VTSA modules** based on 3D printed monoliths with thermoelectric regeneration and "in cascade" **membranes system**. The goal is to achieve high purity CO₂ streams from synergetic effects from both technologies

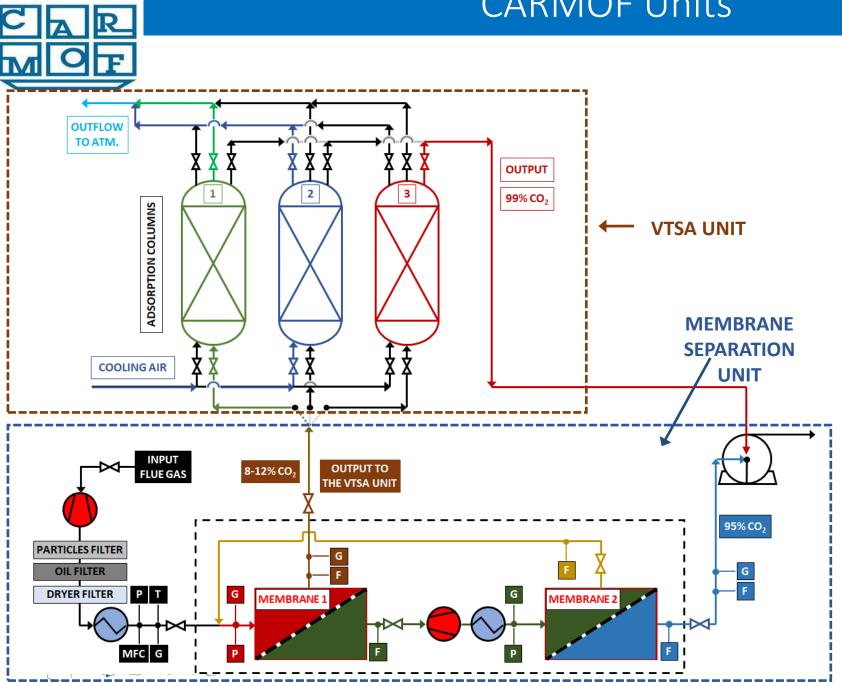
CARMOF

- Consortium consists of 15 partners from 9 countries
- Up to seven industrial pilot plants are proposed across the project – includes both manufacture and capture facilities
- €7.4 M overall budget

💽 Petkim

Εἰ SUK Ελληνογερμανική Εταιρεία Διαχείρισης Αποβλήτων και Περιβαλλοντικών Εφαρμογών





Carbon Capture and Storage (CCS)

- Increasing levels of atmospheric CO₂ are a major contributor to anthropogenic climate change
- CCS aims to capture CO₂ from power plants and industry and sequester it underground
- Current capture and separation technologies use organic amines
- Regeneration of these sorbents is inefficient – it can consume up to 30% of the energy produced by a power station!

CARMOF is a hybrid system based on:

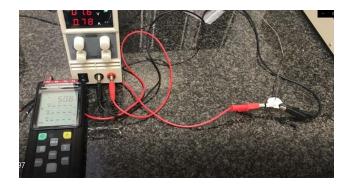
1. VTSA Unit.

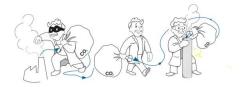
2. Membrane Separation Unit.

Two full **demo pilot** *plants* are planned for 2022 with a capacity of up to 350 tonnes CO2/year.

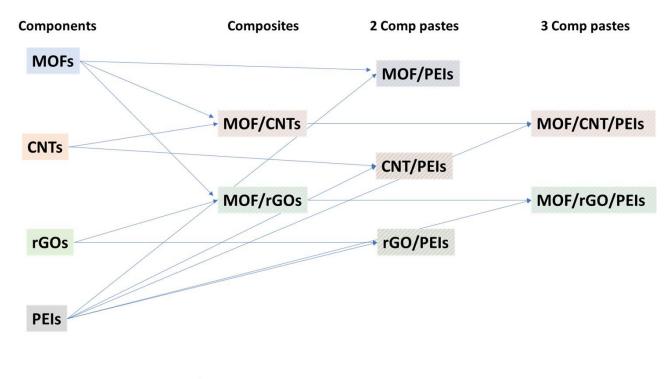
CARMOF Units

The Key Objectives:


- Industrial scale-up to a **full demonstrator** consisting on hybrid membrane combined with VTSA and Joule Swing (JS) regeneration processes.
- To develop a complete two-stage separation membrane system to couple with VTSA system.
- Innovative dry sorbents for post-combustión CO2 capture based on combinations of MOFs, rGO and CNTs, supported by PEI as binder.
- To enhance **manufacturing processes** for these materials combination.
- To develop customized and packed monolith structures based on **3D printing**.



- Hybrid materials based on MOF, carbon nanotubes and reduced graphene oxide.
- 3D printing used to obtain monolithic structures, high packing density and low pressure drop.
- It allows efficient regeneration of saturated sorbents by heating by Joule effect and absorption at vacuum temperature (VTSA).



Innovative **dry sorbents**: Production of 3D printed monoliths of porous hybrid nanomaterials for solid phase CO2 absorption.

Production optimization and upscaling of MOF component.

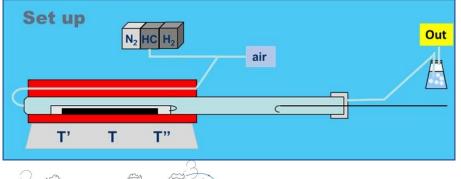
- Production of functionalized CNT component MWCNTs, functionalization by oxidation (-OH, -COOH. Etc)
- Production of functionalized rGO rGO, carboxylic groups
- MOF/CNT and MOF/rGO chemical composites

MOFs for CCS

Requirements:

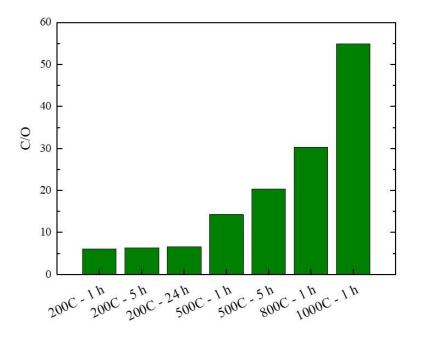
- High volumetric and gravimetric CO₂ capacity
- High CO₂ selectivity (Power station flue gas is not pure CO₂)
- High chemical and physical stability
- Minimal loss of porosity over many heating/cooling cycles
- Low cost!

Lab scale reactor system: 100 g MOF/day



Pilot scale reactor system: 5 Kg MOF/day <u>STY = 266 Kg m³ day⁻¹</u>

MWCNTs for CCS


- Oxidation of NC7000 in batch CNT synthesis unit by air/N2 mixtures.
- Effect of temperature, oxidation time, air concentration, gas Flow rate, CNt mass.
- Use of statistical tool: design of experiments.
- Characterization and analysis of results.

rGOs for CCS

Preparation of rGO with different C/O ratios.

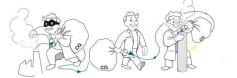
Pastes Preparation (Mixing Process)

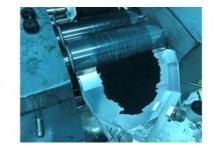
STEP 1

Nanocarbon material

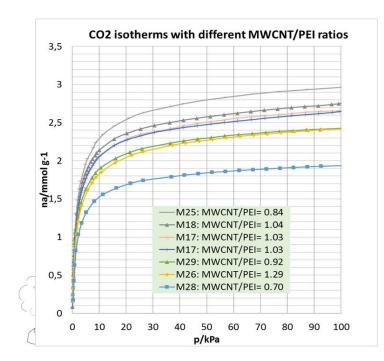
PEI

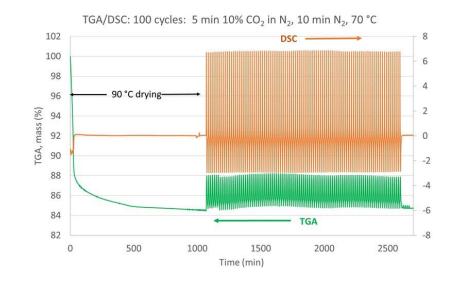
DISPERSANT AGENT


Manual stirring adding water until obtaining the right texture


MAIN ISSUES:

- CO2 adsorption values of the ٠ material and then after monolith 3D printing process.
- Suitable viscosity for 3D ٠ printing.
- To avoid water segregation.
- To control shrinkage through a strong optimization work.
- Homogeneous heating by ٠ thermoelectric effect (Joule Effect).





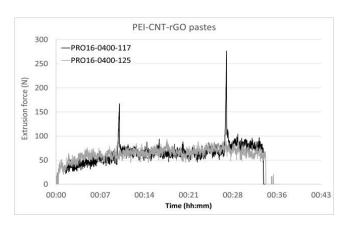
Pastes Preparation (Mixing Process)

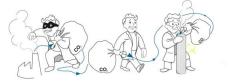
Until now best samples are MWCNT/PEI pastes, instead of 3 component. Combinations with rGO are giving promising results.

High selectivity to CO2 over other gases as well as stable performance over high number of sorption/desorption cycles.

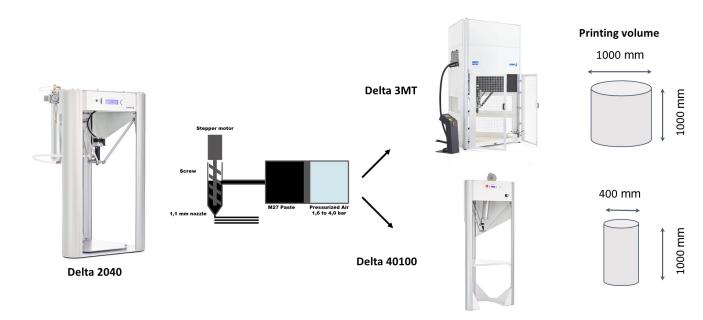
For the MWCNT/PEI composite, MWCNT may act in two ways:

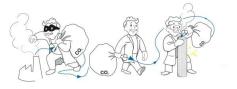
- facilitating the diffusion of CO₂ into the sorbent structure by diffusion through or along its surface, and
- As spacer, avoiding thick aggregates of PEI leading to long diffusion paths through polymeric medium to reach sorption sites.



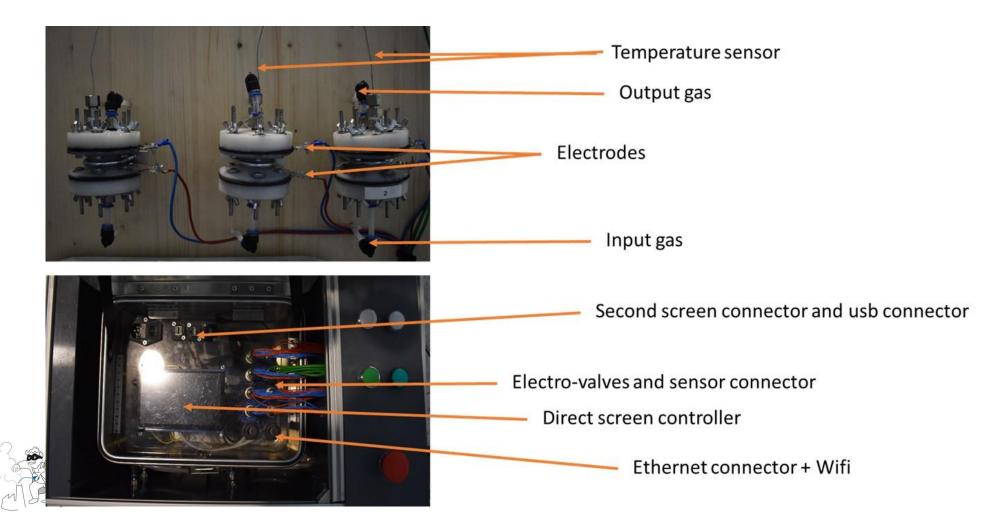

3D Printing (monoliths)

Optimization work related to avoid unstable Flow, phase segregation, bad cohesion of the paste and inhomogeneous shrinkage.

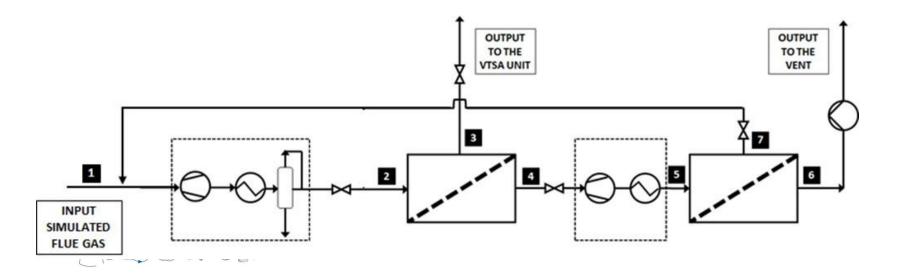

Improvements have been observed with different linkers and dispersing agents. Drop in sorption but to a lesser extent.



3D Printing (scale-up)



VTSA Benchmark. Joule Effect and sensoring process.


2. MEMBRANE Unit

Evaluation of the separation performance of the membrane unit

>Investigation of the effect of recycling the retentate output of the 2nd membrane module into the gas feed introduced into the membrane cascade by conducting experimental runs using two commercial membrane modules in series and a dry mixture of 15.6 v/v% $CO_2 - 84.4 v/v\% N_2$ as a feed.

The two-stage membrane section has been tested successfully according to work programme using polyimide commercial membranes

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/e - EINDHOVEN - 16-17 FEBRUARY 2021

Thank you

* * * * * This This

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760884. This publication reflects only the author's view and that the Commission is not responsible for any use that may be made of the information it contains.

Introduction to the COZMOS project

<u>Richard H. Heyn</u>, COZMOS Dissemination and Communication Manager SINTEF Industry, Oslo, Norway

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

COZMOS - Efficient CO₂ conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS

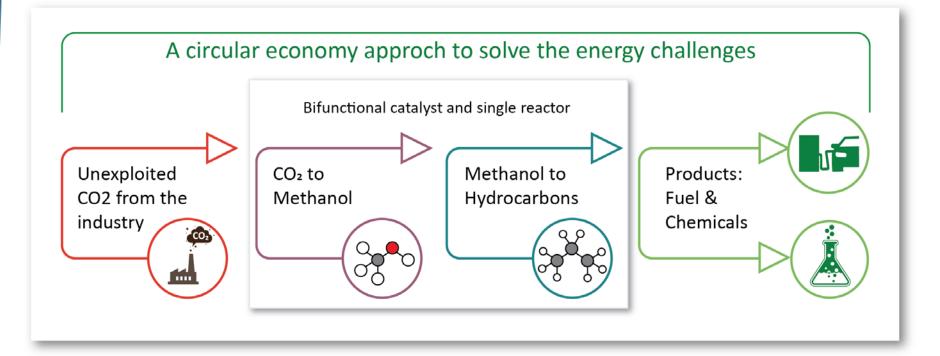
- Four year project (01.05.2019 30.04.2023)
- Coordinator: Prof. Unni Olsbye, University of Oslo

• Industry partners

• RTO partners

Foreign partners

Institute for Coal Chemistry (ICC) - China


King Abdullah University of Science and Technology (KAUST) – Saudi Ararbia

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

CO2MOS

COZMOS in a nutshell


COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuel and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

COZMOS Work Packages

- WP1 Optimization of catalysts (and process conditions) for cascade reactions
 - Partners: Univ. Oslo, Haldor-Topsoe, CNRS, SINTEF, Univ. Torino, ICC, KAUST
- WP2 Process design and optimization
 - Partners: Linde, Haldor-Topsoe, Tata Steel, Tüpraş
- WP3 Demonstration (TRL5)
 - Partners: **Tüpraş**, Univ. Torino, Tata Steel, Linde, Haldor-Topsoe
- WP4 LCA, TEA and social aspects
 - Partners: Tata Steel, Univ. Sheffield, Tüpraş
- WP5 Communication, dissemination, outreach and exploitation
 - Partners: **SINTEF**, Tata Steel, Linde, Univ. Sheffield
- WP6 Ethics
- WP7 Management

Project overview

**** * * ***

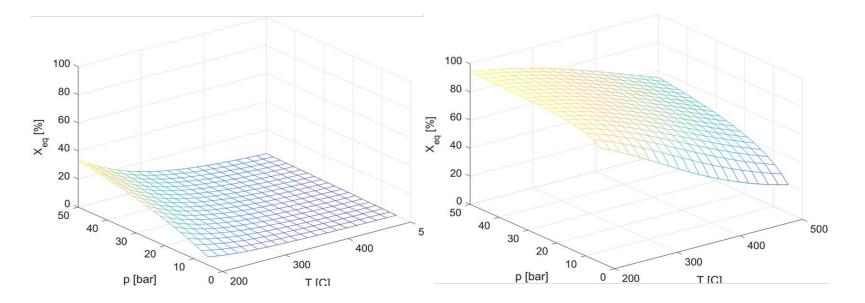
COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuel and OlefinS.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

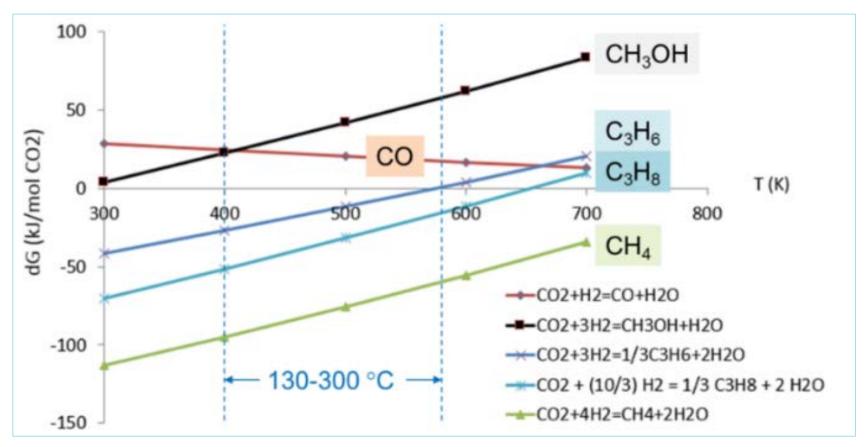
Project Objectives and Innovations

- Development of an energy efficient, economically viable, environmentally friendly and socially acceptable process
- Development, optimization and upscaling of a combined catalyst for hydrogenation of CO₂ to C₃ products
- Determination of optimal process conditions, *i.e.*, optimal heat and pressure management with minimal separation
- Overall integration and validation in a relevant environment (TRL 5)
- Innovation 1: Tailor-made bifunctional catalysts for maximizing the yield, working at low temperature and pressure for both steps, with feeds with various compositions
- Innovation 2: Single reactor and optimized global process design for operation under conditions that are optimal from an energetic and technoeconomic perspective, with efficient heat and pressure management, minimized separation and optimized recycling

Impact


- Decrease in CO₂ emissions by 1.9 t_{CO2} / t_{C3 product}
 - DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V., Low carbon energy and feedstock for the European chemical industry, 2017
- Convert 0.4 Mt CO_2 /yr in 2030, 2.2 Mt CO_2 /yr from 2034
- Flexible solutions for local requirements and different industries.
- Key aspect is availability of H₂
 - Must be made from renewable energies with no (appreciable) carbon footprint
- Scenario 1 Lots of renewable energy and CO₂, but remotely located
 - Utilize excess renewable energy and make propane, which is a transportable energy vector (heating, cooking, transport)
- Scenario 2 Limited renewable energy/high demand for H₂, located within established process industry infrastructure
 - Synthesize propene for use within the chemical industry

Thermodynamics – Le Chatelier is our friend

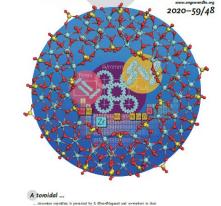

- All CO₂ chemistry has thermodynamic limitations
 - Hydrogenation of CO₂ to MeOH included
- If a second reaction converting MeOH is combined with CO₂ hydrogenation, CO₂ conversion should increase

Maximum achievable per-pass (equilibrium) conversion of CO₂ to C₃ products Left: Convential two-reactor system. *Right: COZMOS* one-reactor process

Thermodynamics is our favor

Gibbs free energy vs. Temperature for CO₂ hydrogenation reactions

 Hydrogenation of CO₂ to C₃ products is thermodynamically favorable in a readily accessible temperature/pressure window



Publications thus far

- On the conversion of CO₂ to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty?
 - From Univ. Oslo, Univ. Torino, CNRS
 - Catal. Sci. Technol. **2020**, 10, 4373-4385
- A toroidal Zr70 oxysulfate cluster and its diverse packing structures
 - From Univ. Oslo
 - Angew. Chem. Int. Ed 2020, 48, 21397–21402
- Selective Conversion of CO₂ into Propene and Butene
 - From ICC and Univ. Oslo
 - Chem 2020, 6, 3344-3363
- CO₂ hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO₂/Zeolite catalysts
 - From Univ. Torino, KAUST, Univ. Oslo
 - Accepted, Catal. Sci. Technol.
- Analytical Review of Life-Cycle Environmental Impacts of Carbon Capture and Utilization Technologies
 - From Univ. Sheffield, TATA Steel
 - Accepted, ChemSusChem

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuel and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

WILEY-VCH

10

International Edition

Conclusions

- The COZMOS project aims to combine two catalytic processes into a single catalyst and process for the conversion of CO₂ into C₃ hydrocarbons
- The goal is to exploit Le Chatelier's principle to drive equilibrium-limited CO₂ conversions to higher, industrially relevant levels.
- The conversion of CO_2 to C_3 products is thermodynamically accessible in an industrially relevant temperature window.
- Important to optimize process conditions to minimize recycle and energy requirements
- Vision is a flexible process that can vary the C₃ product to fit the needs and limitations of different locations.

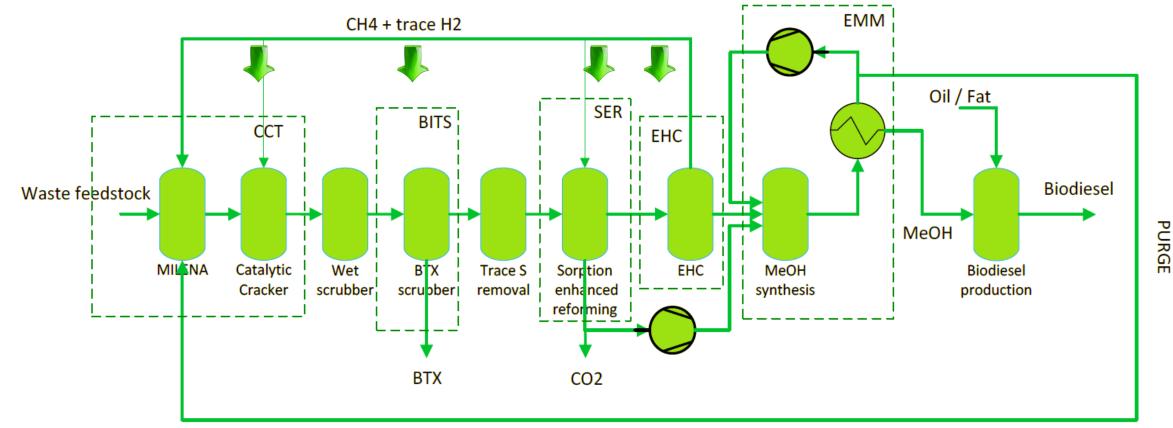
CONVERGE technology for efficient methanol production: Energy and Environmental A analysis

Petrescu Letitia

•••• International workshop on CO2 capture and utilization/Eindhoven/16-17 February 2021

Objectives

» Green methanol for biofuel production using waste feedstock as raw-material



- » The waste feedstock (from 4 different regions) will be characterized and used in process modeling and simulation tasks; its supply chain will represent important data for LCA
- » The optimum economic layout will be identified for CONVERGE technology
- » LCA will compare the environmental impacts of CONVERGE to other green methanol production processes
- » Evaluation of social impact

CONVERGE concept

» Combines five innovative processes

Figure 1. CONVERGE process flowsheet

CONVERGE main units

ССТ	BITS	SER	EHC	EMM
 Catalytic cracking of tars from an indirectly heated gasifier to below green C8 	 Recovery of refinery products including aromatics for green C6- C8 fraction (BTX) 	 » Sorption-Enhanced Reforming of C1-C6 for excess-carbon removal, and H2 production 	 » Highly efficient electrochemical compression of green H2 with by-product fuel 	 Enhanced Methanol Membrane to ensure efficient green biodiesel production
» Advantage:	» Advantage:	» Advantage:	» Advantage:	» Advantage:
 Removes the separation of high molecular weight tars from downstream processes, also allowing other by-product fuels, i.e. CH4 and methanol purge to fire the gasification and SER units 	 Avoid the need to pressurize all the producer gas to perform hydrodesulphurization (HDS), and create an extra revenue stream that will also receive positive price pressure in a future carbon-constrained world 	production	 Elimination of mechanical compression costs for H2 compression. In combination with SER and EMM compression costs are driven to an absolute minimum 	 Due to in situ separation of inhibition products the catalyst for methanol production operates more efficiently as the composition remains further away from equilibrium

CONVERGE - Advantages

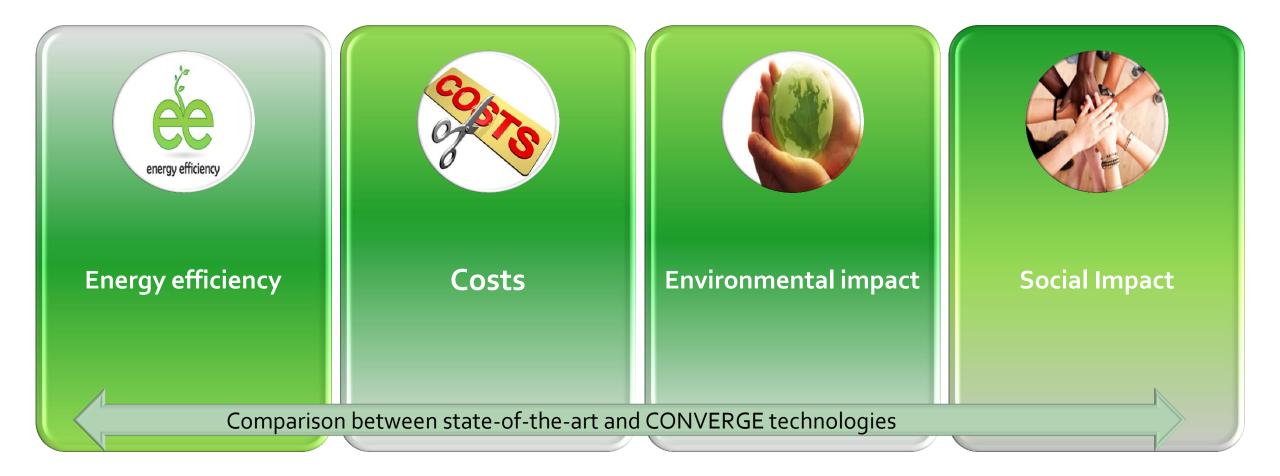
Technical

- » ≥30% of energy losses related to biodiesel production \rightarrow 712% in » 10% \searrow of OPEX; production;
- » Syngas treatment: 75% in C/H₂ purity \rightarrow 717% overall carbon usage;
- » SER: reduce the H₂ production and CO₂ separation from 2 MJ/kgCO₂ down to 1.2 MJ/kgCO₂;
- » EHC: reduce the purification and compression work from 16 MJ/kgH2 down to 12 MJ/kgH2;
- » Enhanced Membrane Methanol synthesis: single pass conversion >33% \rightarrow size reduction of the methanol reactor;

Economic

» 15% \searrow of CAPEX for the overall process;

Environmental


- » Reduction of CO₂ emissions by 0.2 kgCO₂/kgMeOH as consequence of higher production efficiency;
- » Reduce the biomass transportation costs as consequence of the process flexibility and supply chain evaluations for 4 distinct geographical regions;

WP objectives	• Definition of the Base Case (BC) and CONVERGE Case
Steps to reach the objectives	 Identification of possible raw-materials for BC and CONVERGE Case Identification of the main blocks for BC and CONVERGE Case Identification of the best operating conditions of various sub-units Construction of BC and CONVERGE Case process flow-diagram
Tools to reach the objective	 Process flow-modelling tools (i.e. Aspen Plus) Validation of the models Discussions, side-meetings, e-mails, skype calls
Results obtained	 Detailed mass & heat balances for BC and and CONVERGE Case Technical KPIs (e.g. cold gas efficiency) Plants economics (e.g. levelized cost of fuel)

WP 5 Objectives

Technical analysis

Base case

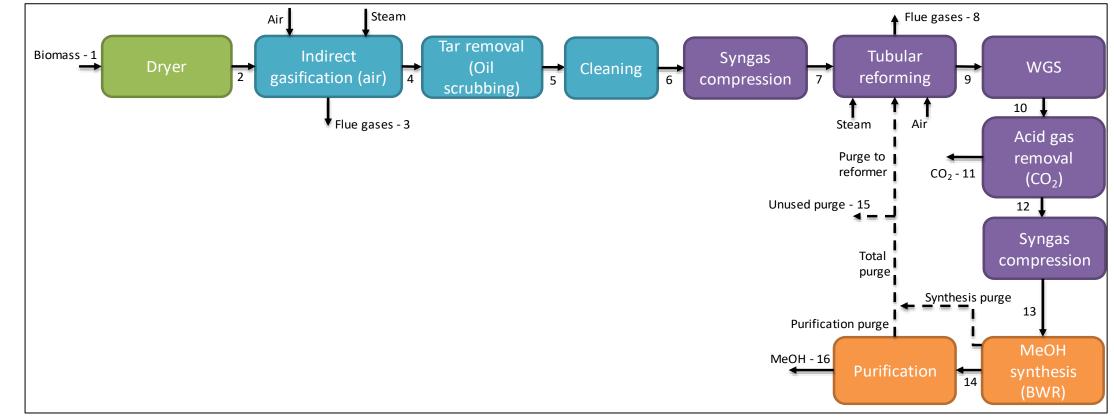
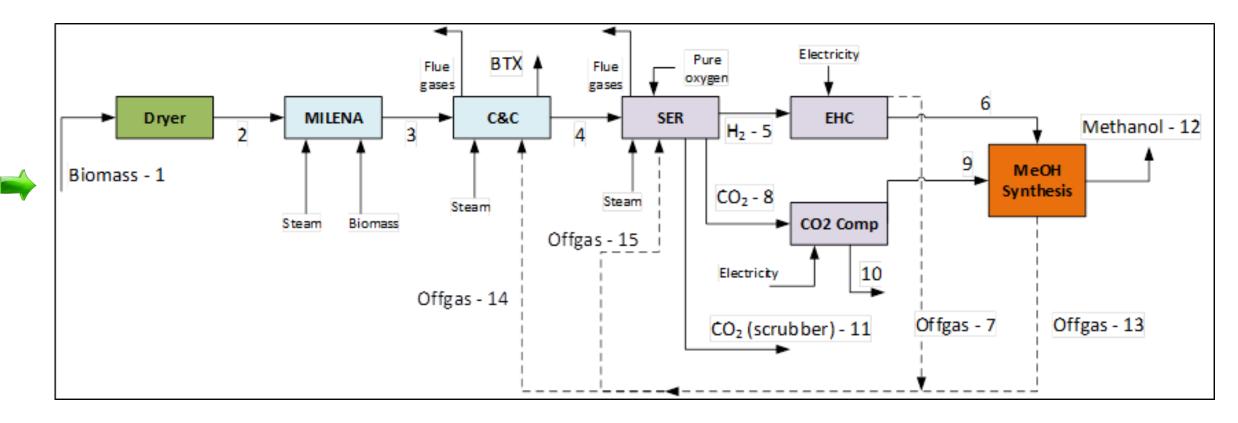



Figure 2. Simplified process flow-sheet of the Base Case

Technical analysis – Case studies

CONVERGE Case

Figure 3. Simplified process flow-sheet of the CONVERGE Case

○ ○ ○ International workshop on CO2 capture and utilization/Eindhoven/16-17 February 2021

Technical analysis

Table 1. Case studies comparison

PROCESS	BASE CASE (BC)	CONVERGE CASE
Biomass drying	Tube bundle drier	Tube bundle drier
Biomass conversion	Indirect gasification (MILENA)	Indirect gasification (MILENA)
(Syngas production)	Atmospheric pressure	Atmospheric pressure
	Air and steam	Air and steam
Tar removal	Oil scrubbing (OLGA)	Catalytic Cracking
	Water scrubbing	Water scrubbing
	Compression up to 22 bar	-
Syngas cleaning and	Tubular reforming	-
conditioning	WGS bypassed	-
	Acid gas removal - MDEA	$SER+CO_2$ compression (up to 80 bar)
	Compression up to 72 bar	ECC (compression up to 80 bar)
Methanol synthesis	Boiling water reactor	Membrane reactor
Methanol purification	Stripping of light gasses and	Stripping of light gasses and water
	water separation	separation

Technical analysis

Table 2. Examples of possible biomass

	Forest residues	Cereal straw	Residual lignin
С	50.71	48.12	57.80
Н	6.08	6.57	6.20
0	42.84	48.18	33.83
Ν	0.38	0.45	0.80
S	0.06	0.07	0.13
Cl	0.09	0.30	0.00
Fixed C	17.93	21.02	27.80
Volatile matter	82.07	78.98	72.20
Ash	1.00	6.70	0.10
Moisture	35.00	7.80	52.00
LHV [MJ/kg]	11.55	15.37	11.01

Table 3. Global plant performance

CGE section		Base Case	CONVERGE	CONVERGE Optimized
Global (methanol)		58.59%	42.55%	49.43%
Global (methanol +B	TX)	-	51.45%	58.75%
MILENA	Gasifier	82.73%	84.41%	84.43%
Cleaning		99.79%	97.89%	94.96%
Reformer	SER	104.79%	88.34%	94.27%
WGS+CO2 separation		99.98%	-	-
Methanol synthesis		68.36%	82.64%	81.72%
Methanol purification		97.84%		

Technical and economic analysis for BC

Table 4. Case studies comparison

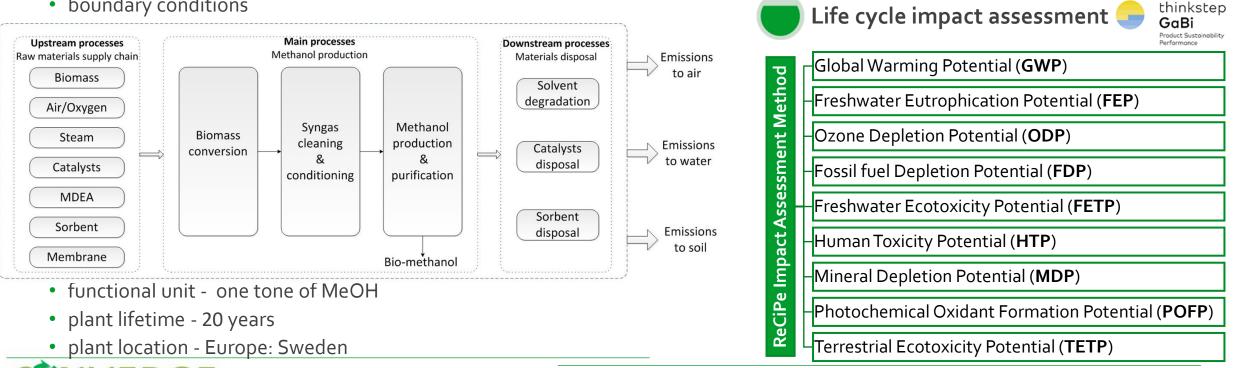
on in Energy-efficient Green

Technical KPI	BASE CASE (BC)			
Plant capacity		10 MW _{LHV}	100 MW _{LHV}	300 MW _{LHV}
MeOH production	ton/d	25.1	251	753
CO ₂ separated	ton/d	27.7	277	831
CGE global	%	58.6		
Costs	BASE CASE (BC)			
Total Capital Investment	M€	39.1	206	424
	M€/y	7.09	43.8	101.6
Total yearly cost	€/ton	1010	525	406
	€/MWh	183	95	73

○ ○ ○ International workshop on CO2 capture and utilization/ Eindhoven/ 16-17 February 2021

Environmental analysis

» Life Cycle Assessment Steps


Environmental analysis

Goal and scope definition

» Goal: Evaluate and compare the environmental burden of biomethanol production proposed in the CONVERGE technology with other technologies for bio-methanol production.

» Scope:

boundary conditions

Life cycle inventory

» Quantification of inputs and

throughout its life cycle

outputs for a product/process

Energy

Raw materials

Air emissions

Soil emissions

Water emissions

Environmental analysis

Interpretation

Table 5. LCA Results

KPI	Units	Base Case	CONVERGE
GWP	kg CO2 eq./ tMeOH	1305.4	1470.47
ODP*10 ⁹	kg CFC-11 eq./ tMeOH	5.85	4.89
FDP	kg oil eq./ tMeOH	6.15	8.35
FETP	kg 1,4-DB eq./ tMeOH	0.51	0.19
НТР	kg 1,4-DB eq./ tMeOH	36.69	7.06
MDP	kg Fe eq./ tMeOH	2.51	2.81
POFP	kg NMVOC/ tMeOH	0.15	0.149
TETP *10 ³	kg 1,4-DB eq./ tMeOH	9.18	4.61

 \odot \odot \odot International workshop on CO2 capture and utilization/Eindhoven/16-17 February 2021

Concluding remarks

- » Different types of biomass are/will be considered in the CONVERGE project for biomass transformation into bio-methanol
- » The attention was focused on forest residues biomass
- » Cereal straw and residual lignin will be considered in future evaluations
- » Calculation of technical KPIs for CONVERGE concept have been performed
- » Economic analysis is an on-going task
- » Environmental impact was evaluated for the main process (base case and CONVERGE concept) but upstream and downstream processes should be included in the analysis (on-going task)

Thank you for your attention!

Acknowledgements

The CONVERGE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 818135

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/e - Eindhoven - 16-17 February 2021

Opening & Plenary Sessions (chairperson Fernanda Neira D'Angelo)

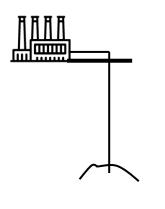
9:30-10:00 All coordinators - Introduction to projects

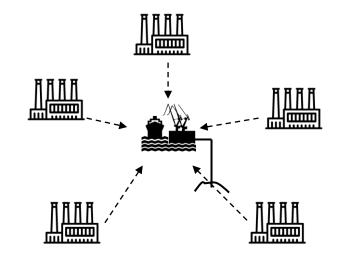
10:00-11:00 Dr. K. Bakke - Northern Lights – concept, plans and future

Northern Lights

A European CO₂ transport and storage network

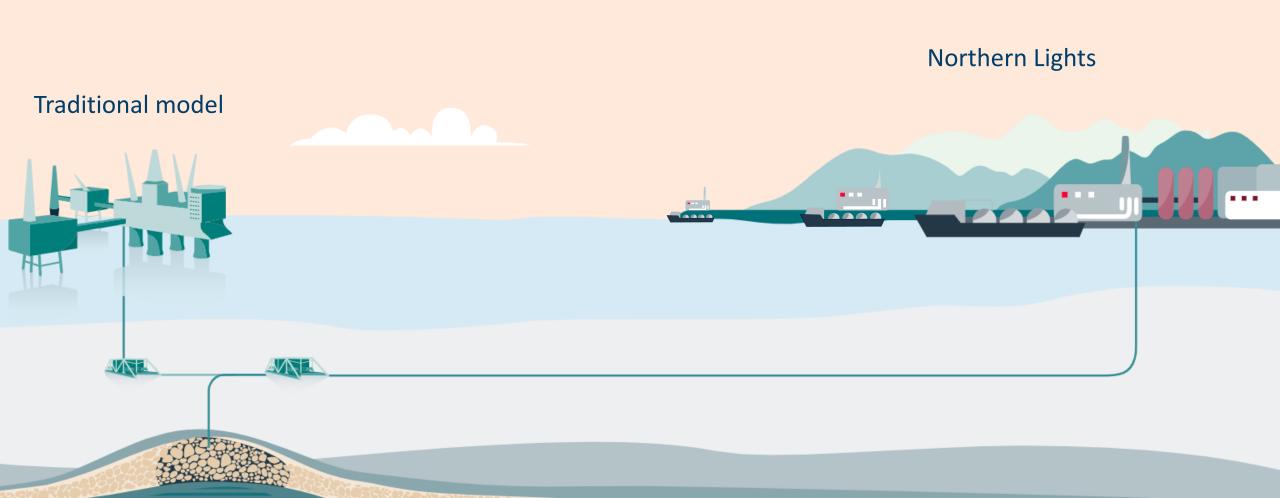
https://northernlightsccs.eu/





Agenda

- Introduction
- Separating source and sink
- Longship
- What is Northern Lights?
- Storage experience
- Is there a business opportunity?
- Some challenges
- Summary
- Q&A



Separating source and sink

SEPARATING SOURCE AND SINK

SEPARATING SOURCE AND SINK

Longship

NORTHERN LIGHTS

Injection and storage

Longship in summary

- Norcem facilities with start-up in 2024
- Partial funding of Fortum Oslo varme (FOV)
 - A FID must be made by FOV within three months of EU Innovation fund announcing awards in the second round, but no later than 31. December 2024
- Northern Lights
 - Facility scope with 1,5 mtpa capacity
 - 2 ships

CO₂ capture Brevik

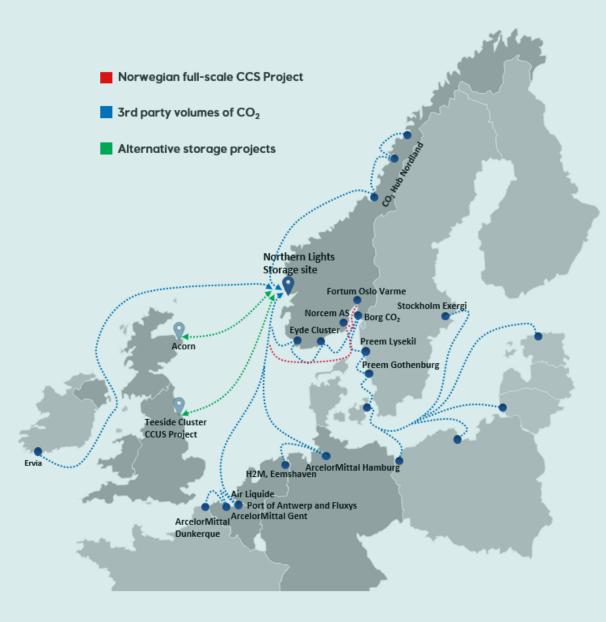
Demonstration plant

400.000 tons per year
✓ 55 tons CO₂ per hour
✓ 50% capture rate

What is Northern Lights?

CO₂ TRANSPORT BY SHIP

Cargo Systems for CO₂


'LPG standard' design Proven concept based on food industry model

Initially two ships

Transport capacity scalable with number of ships

A fleet is required for the planned scale-up – perfect for driving ship technology and fuels development

Northern Lights landanlegg i Øygarden

1.0

LCO2 CARRIER

Onshore plant

Civil works started

Preparations for jetty construction

Project office under construction

Detail engineering of plant started

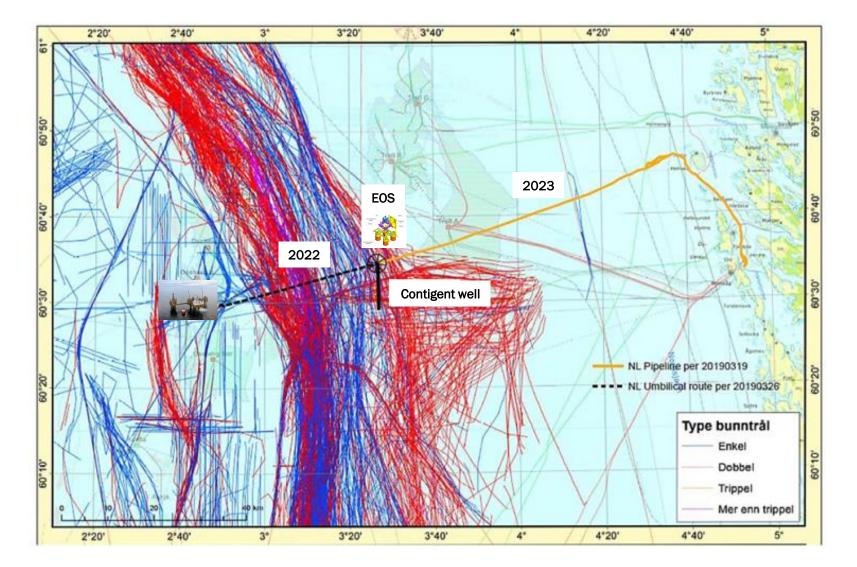
Fabrication of plant starts spring 2022

Pipeline and subsea facilities

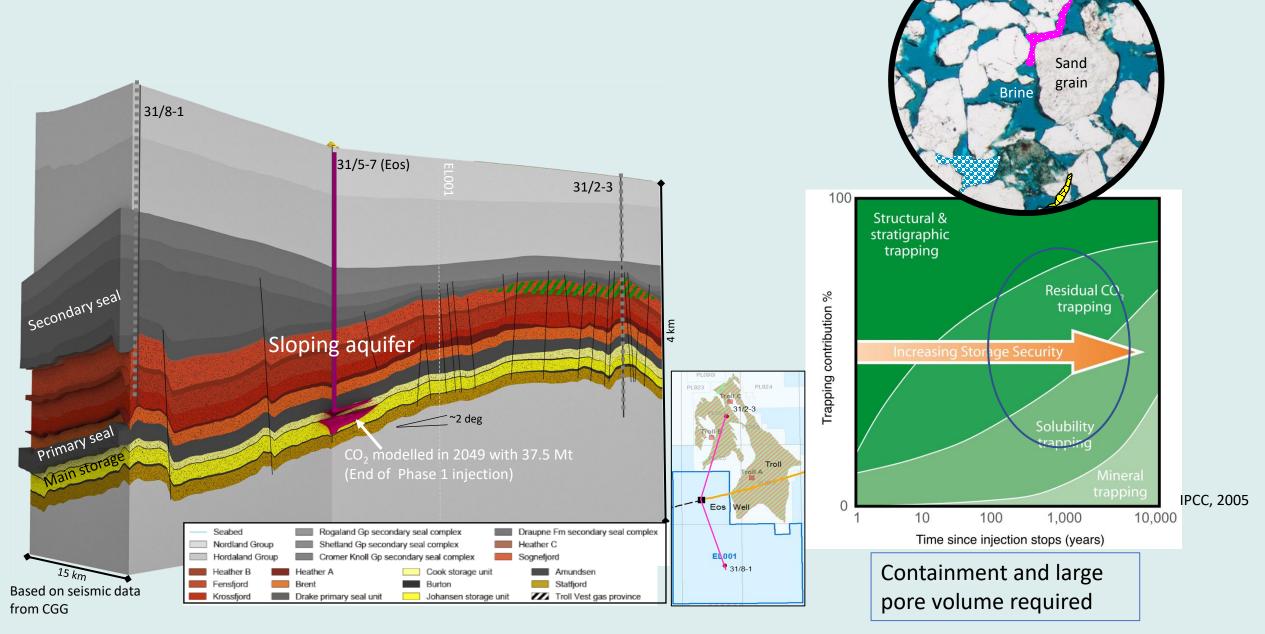
Template installed in 2019, well drilled in 2020

Fabrication of umbilical started

Fabrication of power and fibre optic control cable started


Engineering of topsides modifications at Oseberg started

Engineering of pipelay started

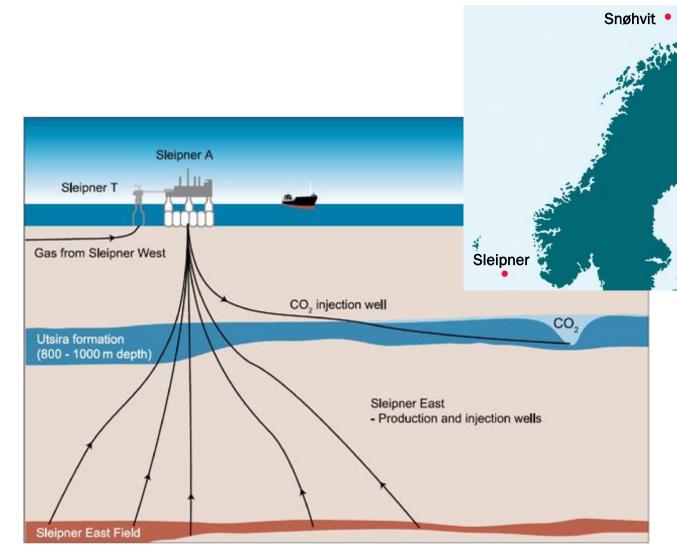


Northern Lighs infrastructure versus fisheries

Bottom trawling activity (2018), as illustrated in IA (Phase 1) – based on satelite tracking datas of vessels 19

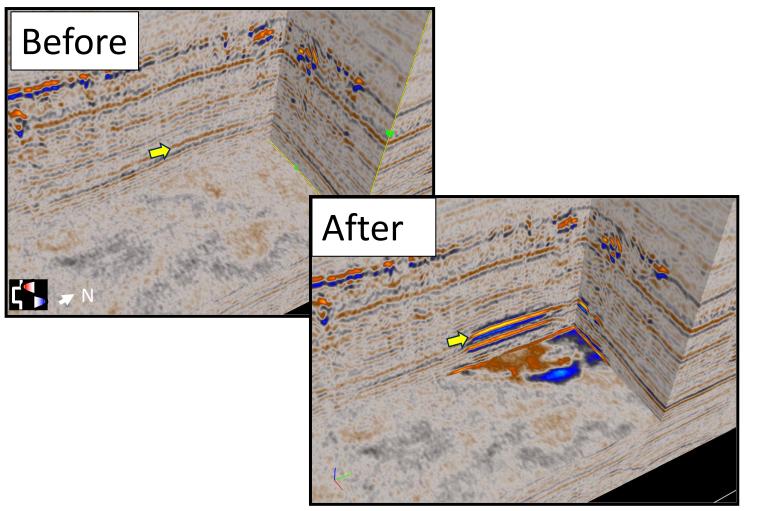
Northern Lights storage concept

Storage experience


Industrial experience – Norway

Sleipner:

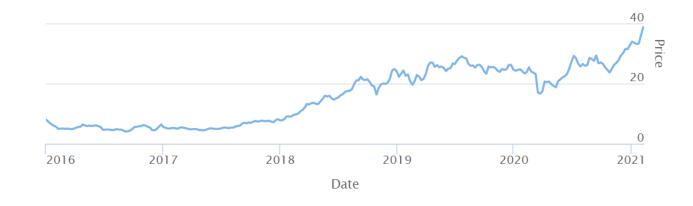
- Injection since 1996
- More than 18 mill t CO₂ stored*
- Frequent monitoring, many academic projects
- Data set publicly available


Snøhvit:

- Injection since 2008
- More than 6 mill t CO₂ stored*
- Subsea facilities

^{*:} status end of 2019

Seismic monitoring (Sleipner)

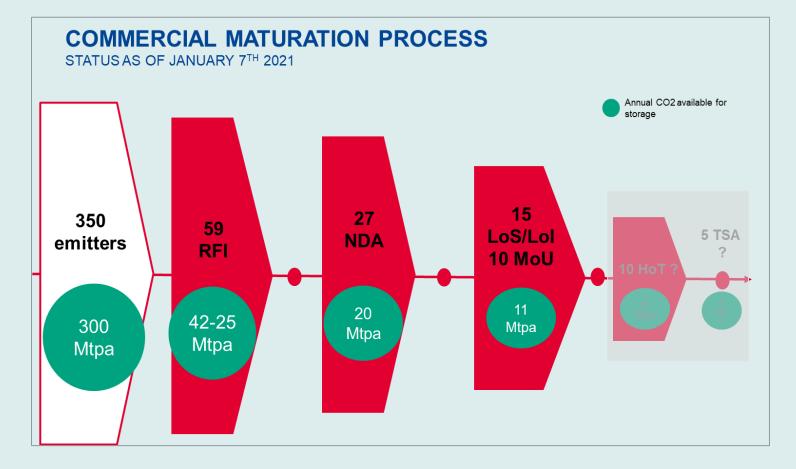


Is there a business opportunity?

https://davidappell.blogspot.com/2019/04/eek-carbon-tax.html

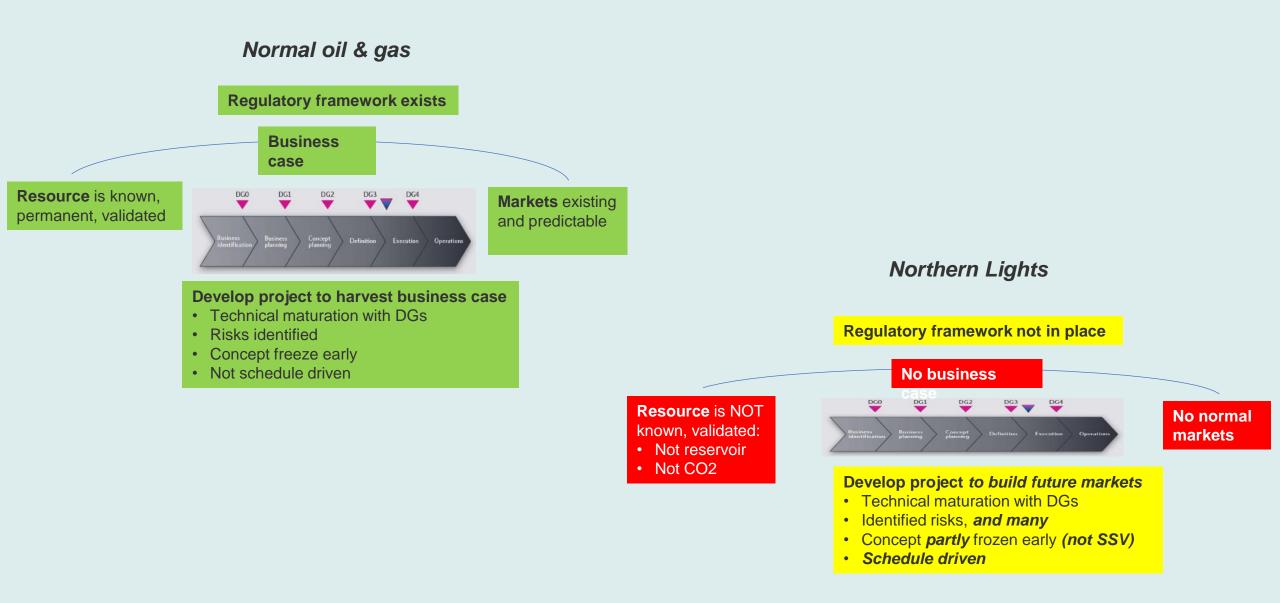
https://ember-climate.org/data/carbon-price-viewer/

IS THERE A BUSINESS OPPORTUNITY?

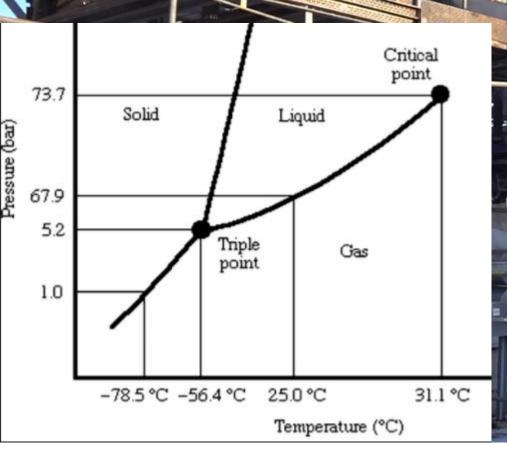

Sectors with the largest potential:

- Waste incineration and waste to energy
- Cement
- Biomass and biofuel
- Refineries
- Steel
- Natural gas
 - Hydrogen
 - Electricity
- Fertilizers
- Data centers
- Direct Air Capture

Business development funnel

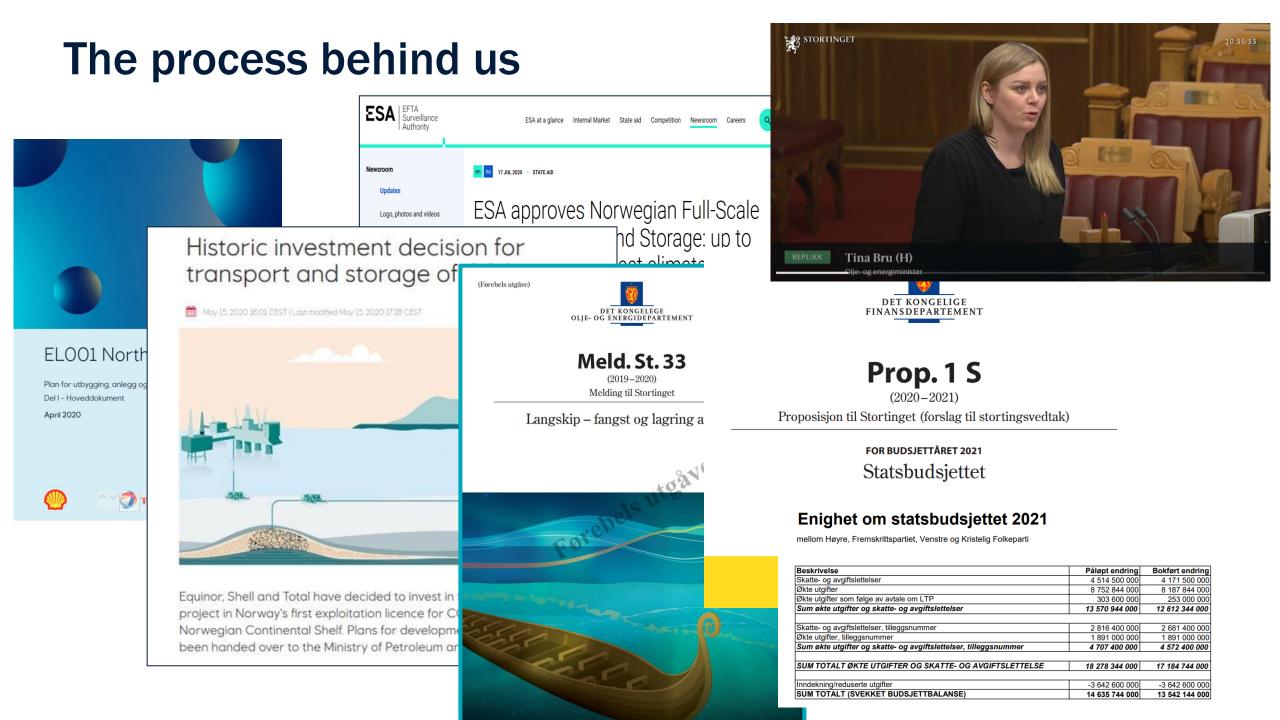

MoU

- Heidelberg Group (cement), Germany
- Fortum Group (WtE); Finland
- Ervia (natural gas supply), Ireland
- Air Liquide (chemicals, hydrogen), Belgium
- Stockholm Exergi (WtE), Sweden
- ArcelorMittal (steel and iron), Luxemburg
- Preem (refineries and fuels, hydrogen), Sweden
- ETH Zürich, Switzerland
- Microsoft, USA



Some challenges

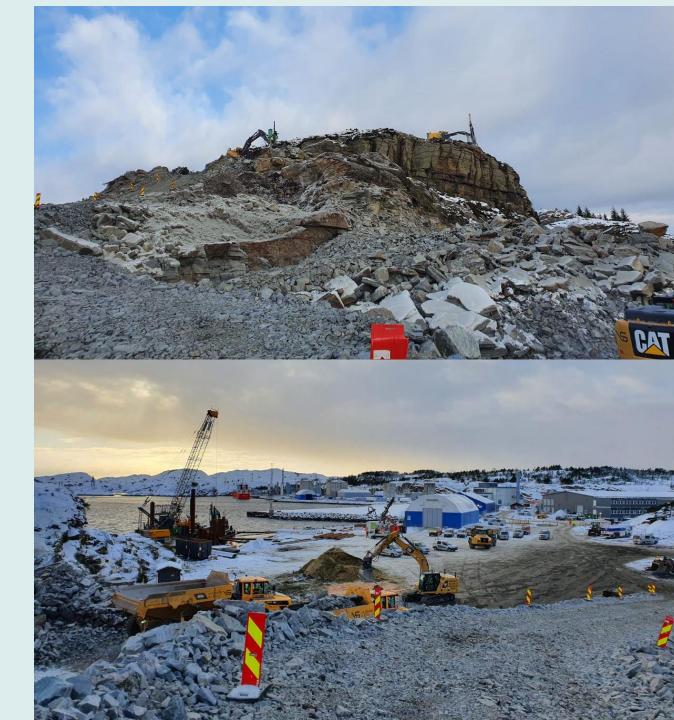
Northern Lights seen from conventional oil & gas project perspective



CO2 is different

- Dry ice
- Displaces air
- Noise
- Cold

Summary


STATUS

Project

- Majority of execution contracts awarded
- Execution started
- Site office in Øygarden in operation
- Start up mid-2024 aligned with Norcem's plans

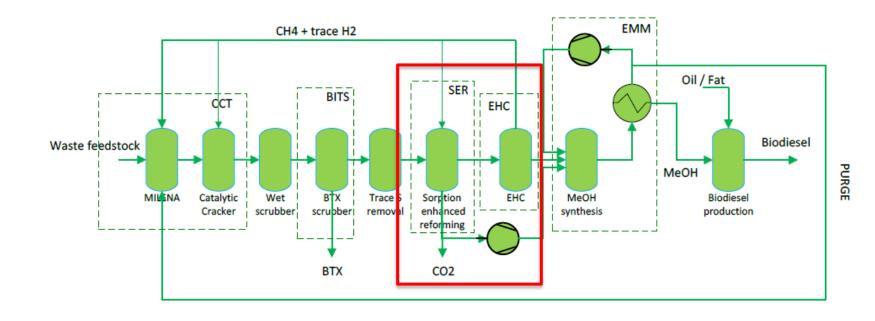
New company - «Northern Lights JV DA»

- Formally established on 5th Feb 21
- Regulatory obstacles passed (competitive clarifications in EU)

Research for a better future

CONVERGE: CarbON Valorisation in Energy-efficient Green fuels

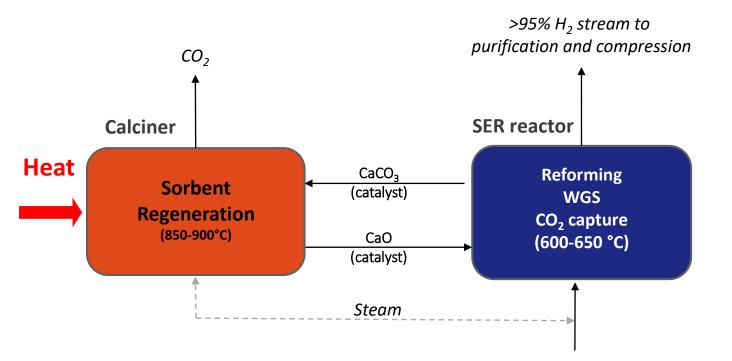
SER and SEWGS for CO2 capture: preliminary experimental results


International Workshop on CO2 capture and Utilization – February 17th 2021

CONVERGE WP3: Objectives

CarbON Valorisation in Energy-efficient Green fuels

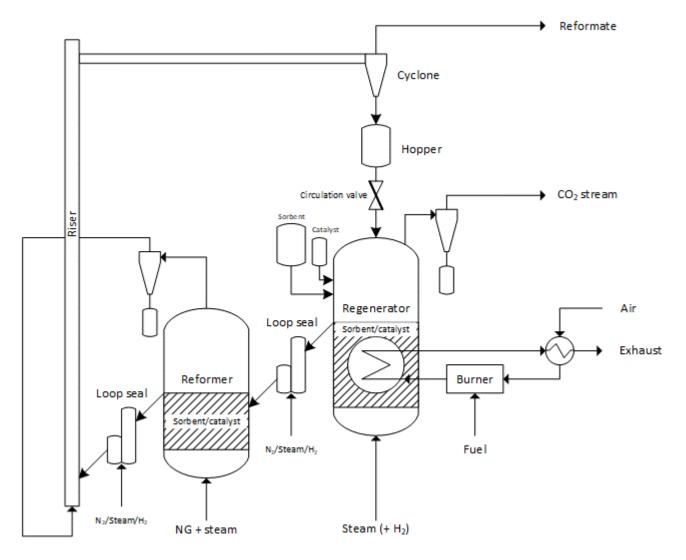
The main objective of WP3 is to validate the integration of the SER and EHC technologies at TRL5 in relevant operating conditions adapted to the CONVERGE concept with the following specific targets:


- Reduce the energy consumption for hydrogen production, CO₂ removal and compression to 1.2 MJ/kg CO₂
 - Optimization of the CO₂ sorbent material used in the SER process
 - Development of new improved catalytic materials suited for the CONVERGE syngas
- Extract and compress H₂ at >99.5% purity, 50 bar and at a primary energy consumption of 12 MJ/kg H₂
- Operate the SER and EHC for 500 hours on C1-C6 containing emulated syngas feed at 10 Nm³/hr H₂ production

Sorption Enhanced reforming (SER)

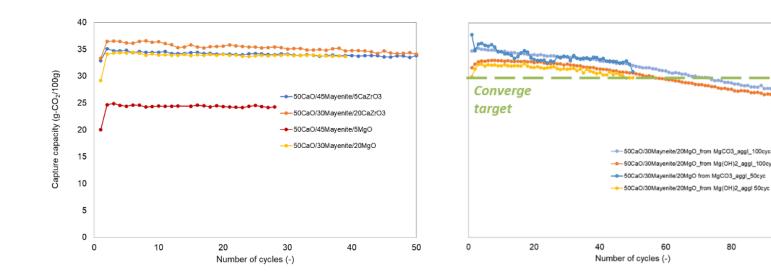
SER integrates Reforming, Water-Gas Shift (WGS) and CO₂ separation through the addition of a high temperature CaO-based CO₂ solid sorbent

SER Concept scheme


Feed Gas after CCT

H2 - 41.9% CO - 10.0% CO2 - 32.4% CH4 - 10.5% C2H4 - 4.4% N2 - 0.9%

Fuel (e.g. syngas, NG, biogas)

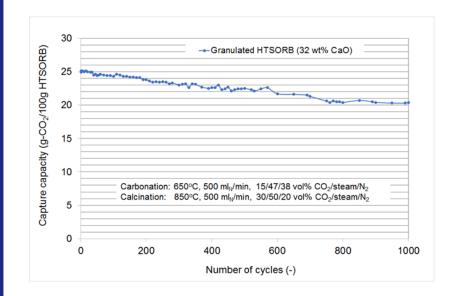

SER reactor technology developed at IFE Dual Bubbling Fluidized Bed (DBFB) reactor system

- Dual bubbling fluidized bed reactor (DBFB)
 - 2 FB-reactors coupled with loopseals and riser
 - Continuous mode
 - Bubbling regime
 - Circulation rate adjusted with slide valve

CO₂ sorbent material used in the SER process

added a thermally stable dopant (ZrO_2 , MgO and Fe_2O_3) in ٠ the CaO/Mayenite sorbent to increase its stability

Sorbent powders: stable activity and capacity target achieved in some cases

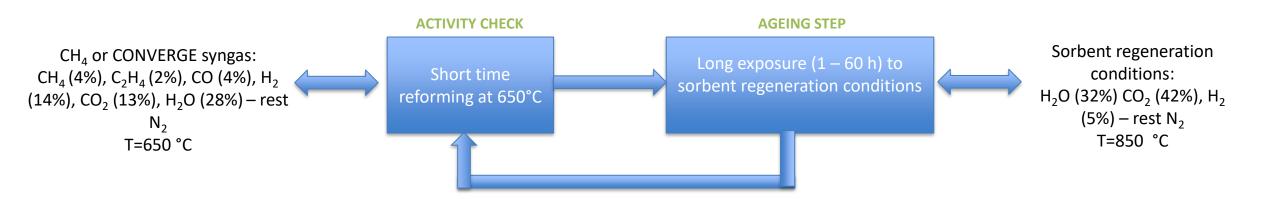

100 cycles test: capacity decreases more severely. The addition of thermally stable agents does not allow reaching the target

60

80

100

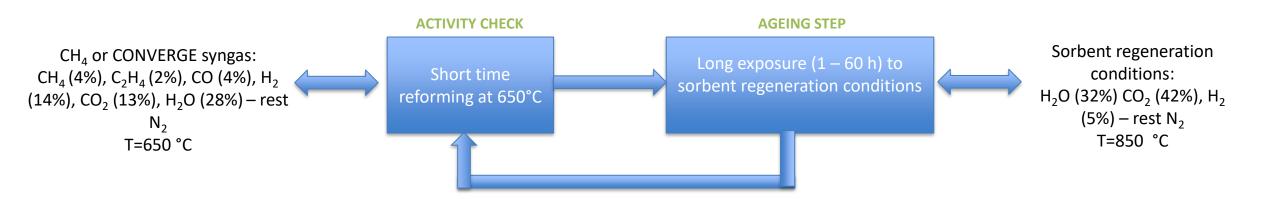
HTSORB Chosen for experiments


Long-term sorption capacity: stabilized at < 20 g-CO₂/100g sorbent after 1000 carbonation-calcination cycles

Development of catalyst tailored for SER process– Stability test

SER Catalyst testing and aging

• New catalytic set-up designed and constructed within CONVERGE project for "stability" and "kinetic" tests.



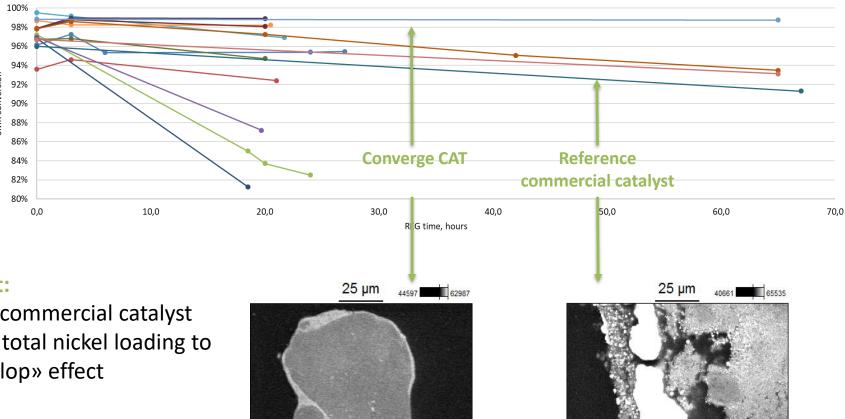
Development of catalyst tailored for SER process– Stability test

SER Catalyst testing and aging

• New catalytic set-up designed and constructed within CONVERGE project for "stability" and "kinetic" tests.

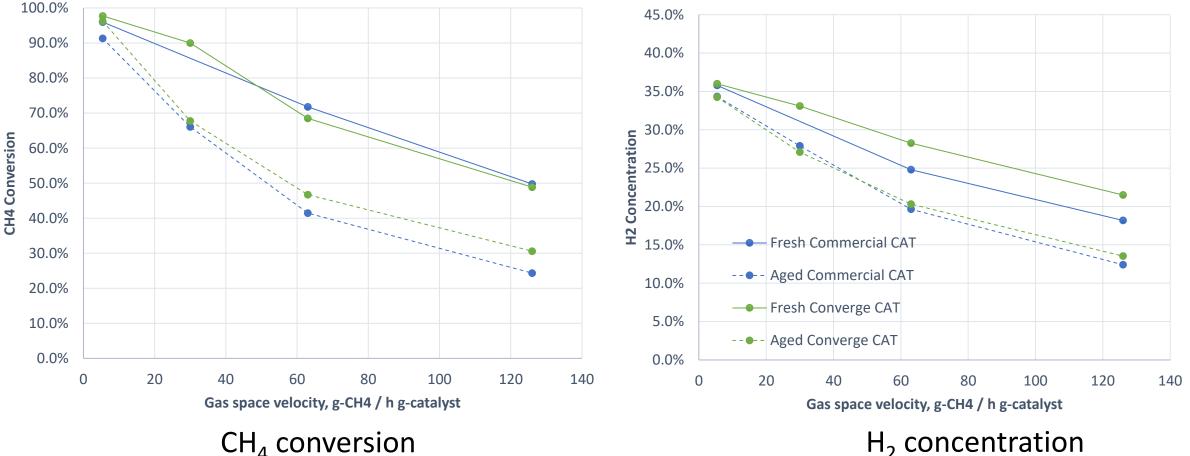
Development of catalyst tailored for SER process – Stability test

Stability tests:

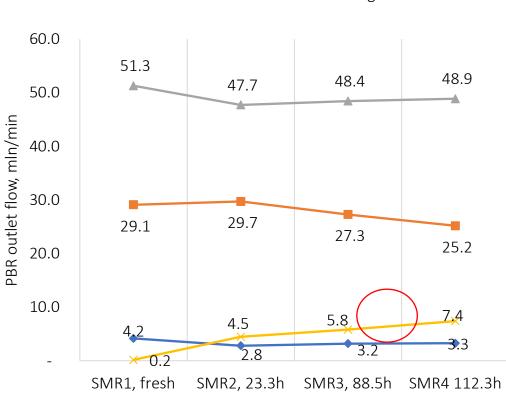

Screening a matrix of 15-20 newly synthesized materials

- 5 different supports
- 5-10-15-20 wt % Ni

Satisfactory results, higher activity than commercial reference for some of the prepared catalysts


SEM characterization after 60h of test:

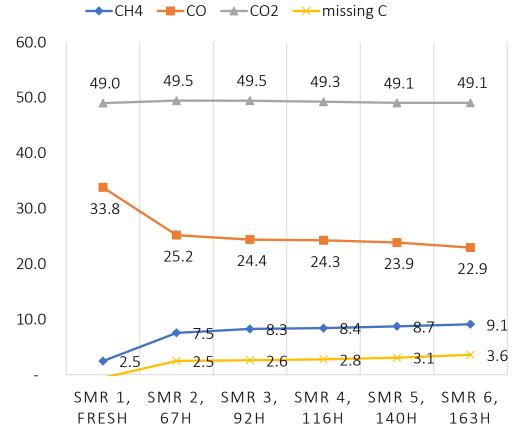
- Nickel sintering well evident in the commercial catalyst
- No evidence of nickel sintering but total nickel loading to be decreased to avoid nickel «envelop» effect


Development of catalyst tailored for SER process– Stability test in SMR conditions (Aged 60h)

- CH_{4} conversion
- Converge CAT presents better CH₄ conversion after aging. Difference more apparent in higher GSV.

Converge CAT presents better H₂ selectivity • fresh and after aging

Development of catalyst tailored for SER process– Stability test



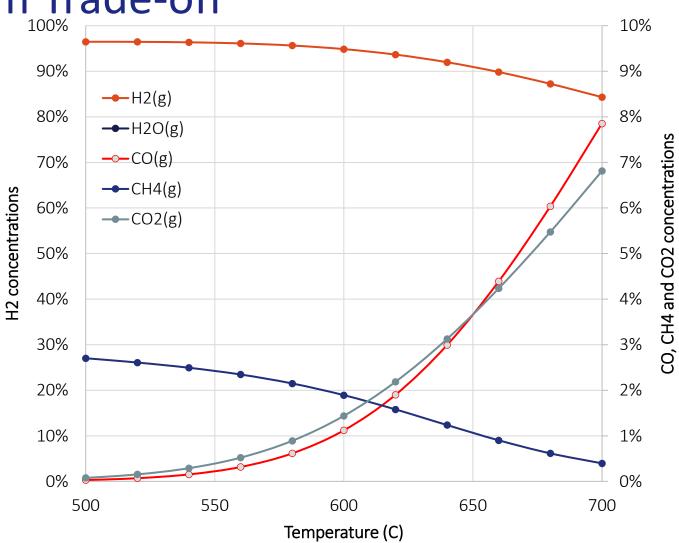
Commercial CAT

← CH4 ← CO → CO2 → missing C

• Experiment stop after 120h aging – High pressure drop

- No carbon deposition
- Experiment stable during 160h aging

Converge CAT

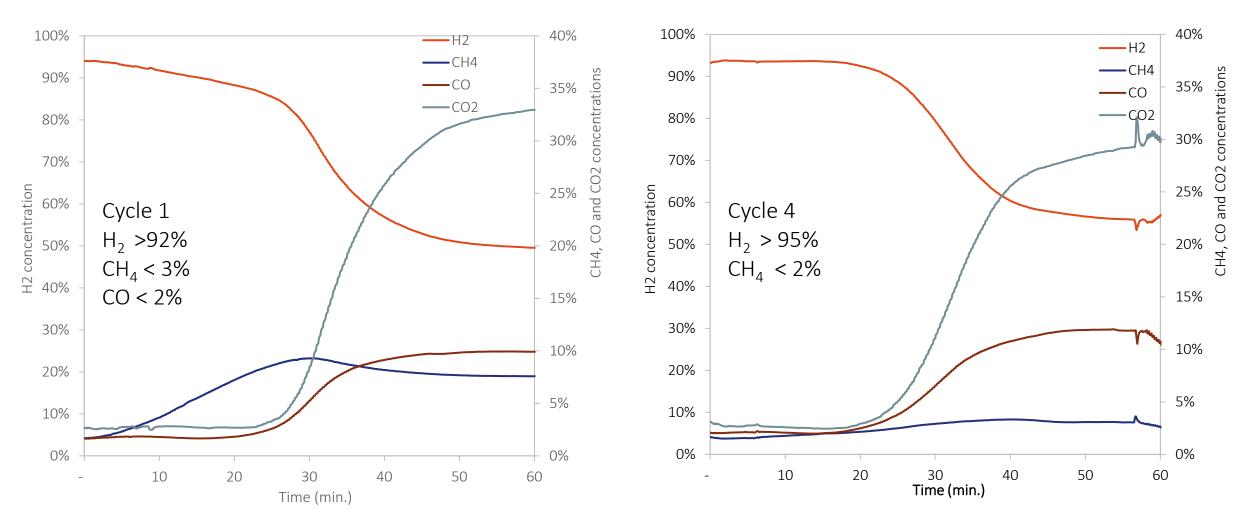

FBR Tests SER/SEWGS – Equilibrium Trade-off

Process Parameters

<u>Temperature:</u> 650°C <u>Pressure:</u> 0.5 barg <u>Fluidization velocity:</u> 0.036 m/s

Feedstock and Materials

<u>Gas Feed: (mol%)</u>: 41.9% H2, 10.0% CO, 32.4% CO2, 10.5% CH4, 4.4% C2H4, 0.9% N2 Steam R value: 2.0

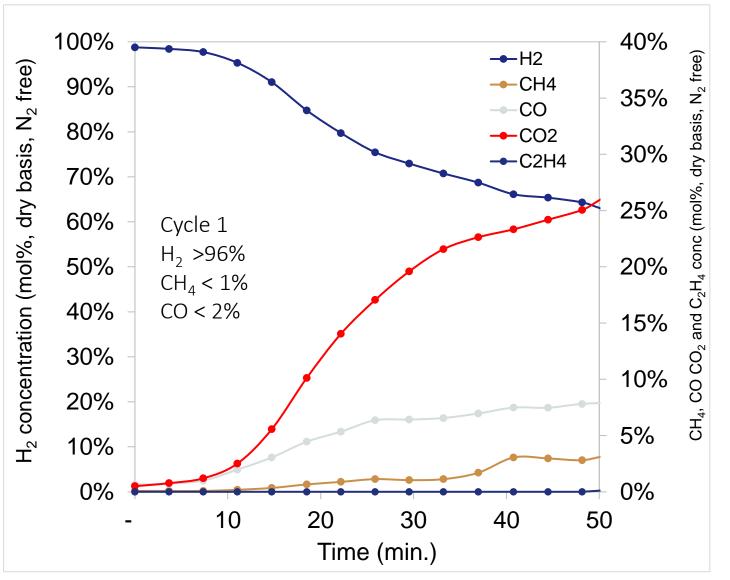


SER/SEWGS – With syngas - Converge Cat

<u>Temperature:</u> 650°C <u>Pressure:</u> 0.36 barg <u>Fluidization velocity:</u> 0.05 m/s

Feedstock and Materials

<u>Gas Feed:</u> (mol%): 41.9% H2, 10.0% CO, 32.4% CO2, 10.5% CH4, 4.4% C2H4, 0.9% N2 <u>Steam R value</u>: 2.0 <u>Materials:</u> 120.7 g CaO sorbent + 12.5 g Converge Cat


SER/SEWGS – With syngas and <u>glycerol</u> - Commercial Catalyst

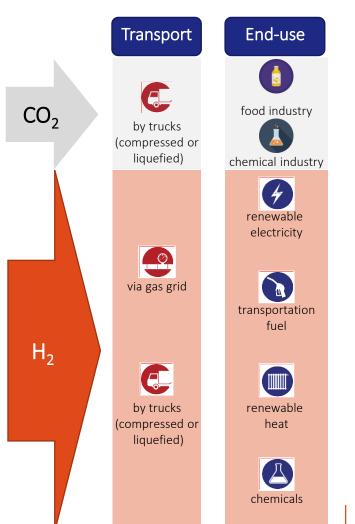
Process Parameters

<u>Temperature:</u> 600°C <u>Pressure:</u> 0.23 barg <u>Fluidization velocity:</u> 0.053 m/s

Feedstock and Materials

<u>Gas Feed:</u> (mol%): 41.9% H2, 10.0% CO, 32.4% CO2, 10.5% CH4, 4.4% C2H4, 0.9% N2 <u>Liquid Feed</u>: glycerol 5% of gas feed <u>Steam R value</u>: 2.0 <u>Materials:</u> 102 g CaO sorbent + 15.4 g Commercial Catalyst

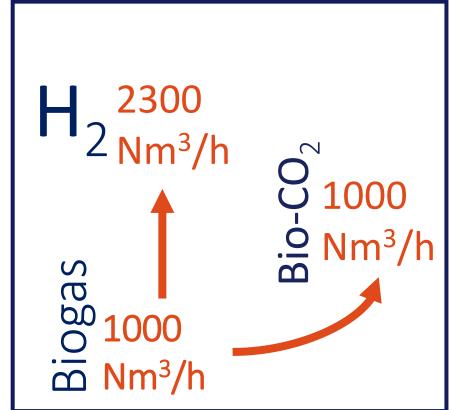
Next Steps SER – EHC 500h demonstration at the IFE-HyNor Hydrogen Technology Center, Norway



Beyond CONVERGE

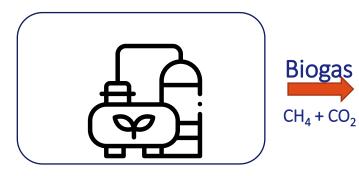
Bio4Fuels - Green Hydrogen from Biogas Sorption Enhanced Reforming - SER

Waste Processing Biogas CH₄ + CO₂ Hydrogen production with integrated CO₂ capture

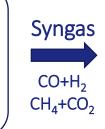


Biogas Upgrading - SER in Numbers

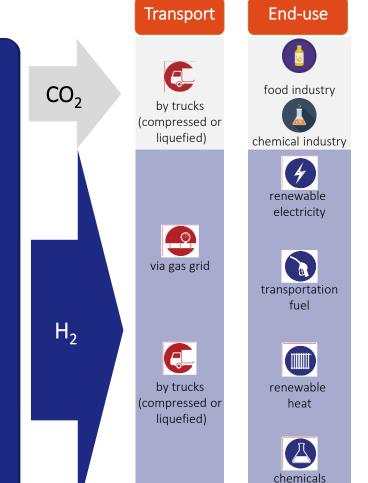
Conversion Efficiency


- H₂ yields (>98%) for CH₄/CO₂ ratios varying between 1 and 2.33.
- CO₂ is over 98% pure.


Hydrogen Production



Green Hydrogen from Syngas and Biogas


Sorption Enhanced Water Gas Shift - SEWGS

Hydrogen production with integrated CO₂ capture

Concluding Remarks

The Sorption-Enhanced Reforming/Shift technology (SER/SEWGS) allows to combine the reforming, shift and CO₂ separation in <u>two reactor vessels only</u> providing the following advantages:

- A simpler and intensified process with fewer reactors, leading to a potentially more compact system
- Fewer costly consumables (no shift catalysts, no CO₂ solvent + additives)
- Improved heat integration possibilities due to CO₂ removal at high temperature
- Separated H₂ (>95 vol%) and CO₂ (> 95 vol%) streams that can be recombined for different fuel/chemical synthesis (methanol, DME) or valorised separately for other markets.
- The excess CO₂ can be sequestrated (BECCS), used to substitute fossil CO₂ in industrial applications or as chemical, or combined with renewable H₂ to produce electro-fuels in power-to-X concepts for energy storage.
- The produced H_2 can also be used alone, as chemical or as fuel.
- Can reform liquid such as glycerol
- These advantages result in CAPEX reduction of about 20-30% compared to conventional commercially available technologies.

The CONVERGE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 818135

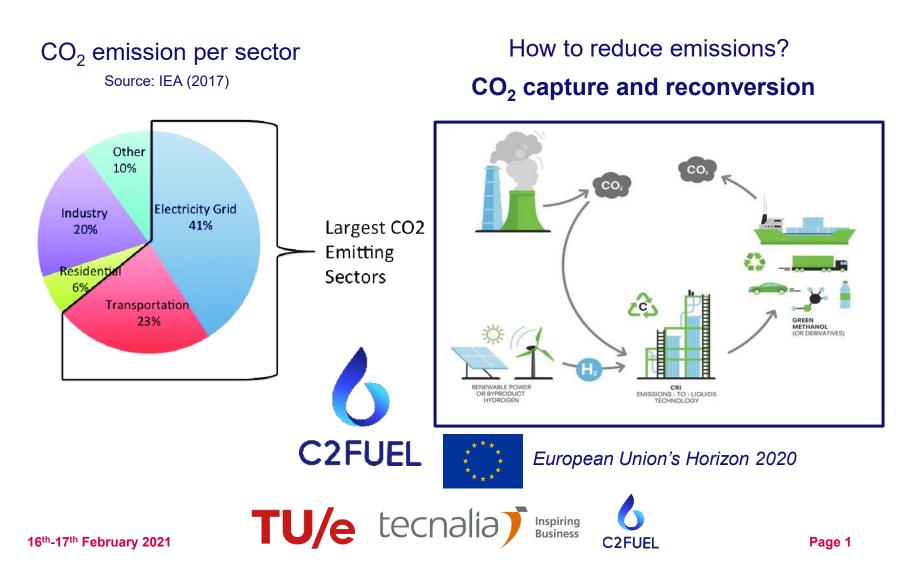
Website: <u>www.converge-h2020.eu</u> Researchgate: CONVERGE: CarbON Valorisation in Energy-efficient Green fuels Linkedin: showcase/converge-horizon2020

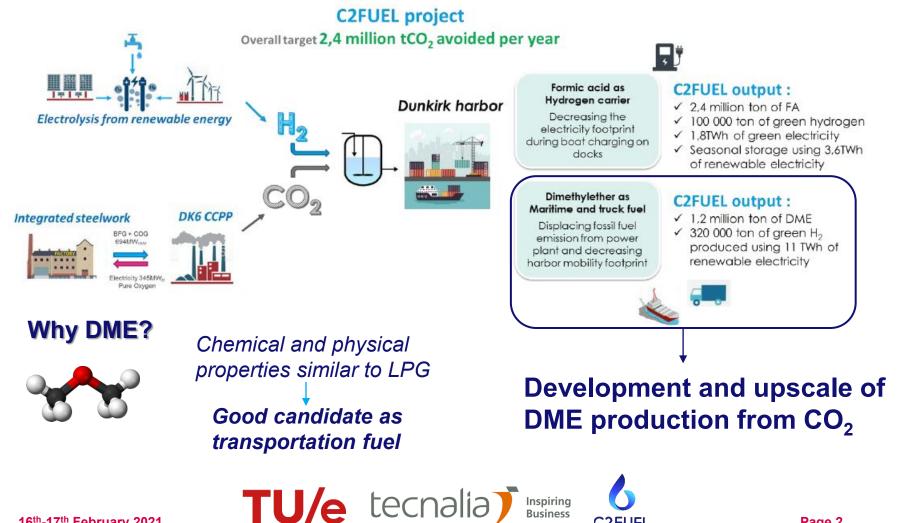
> Antonio Oliveira *Researcher* antonio.oliveira@ife.no

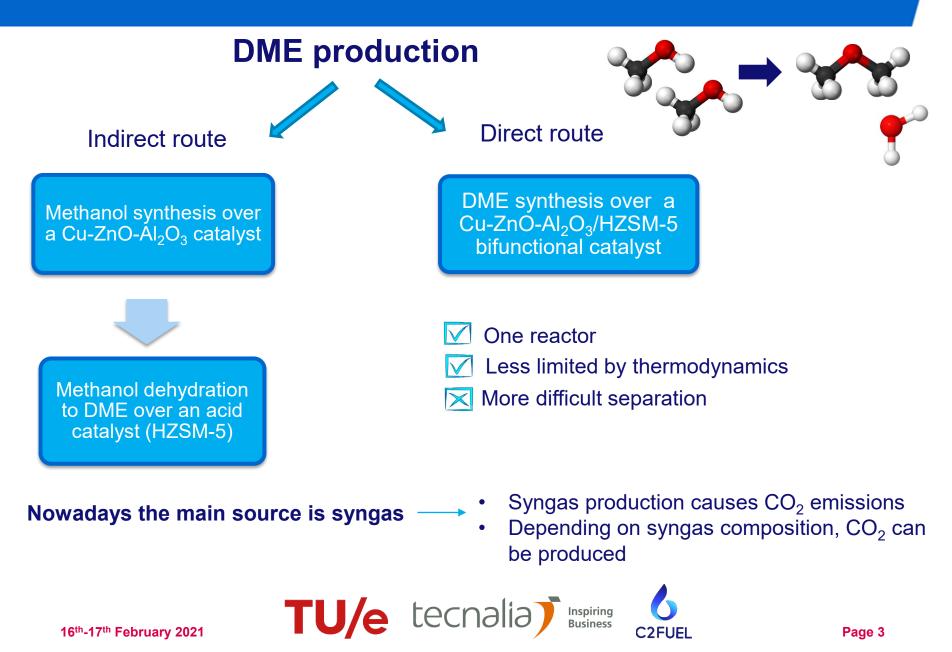
CO₂ direct hydrogenation to DME via membrane reactor

S. Poto¹, M. A. Llosa Tanco², D.A. Pacheco Tanaka², F. Gallucci¹, M. F. Neira d'Angelo¹

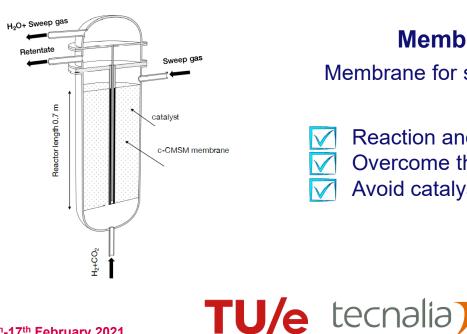
¹Inorganic membranes and membrane reactors, Eindhoven University of Technology. ²TECNALIA, Basque Research and Technology Alliance (BRTA)


International workshop on CO₂ capture and utilization 16th and 17th February 2021




CO₂ emissions and possible solution

CO₂ emissions and possible solution

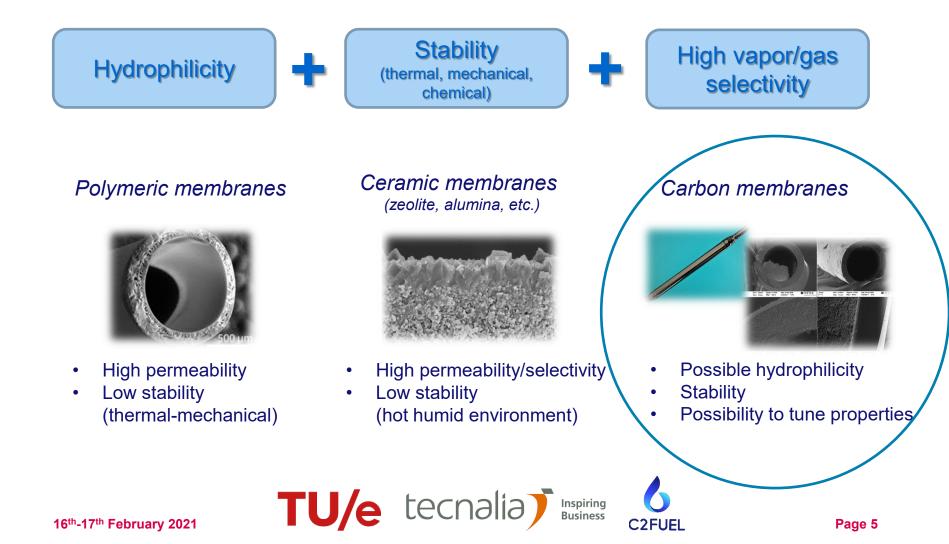


C2FUE

Direct DME synthesis from CO₂

 $CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$ CO₂ hydrogenation: $\Delta H_0 = -49.5 \text{ kJ/mol}$ 1. $CO_2 + H_2 = CO + H_2O$ $\Delta H_0 = 41.2 \text{ kJ/mol}$ Reverse WGS¹ 2 $2CH_3OH \rightleftharpoons CH_3OCH_3 + H_2O$ $\Delta H_0 = -23.4 \text{ kJ/mol}$ Methanol dehydration: 3. Process conditions 200-250 °C - 20-50 bar

Membrane reactor

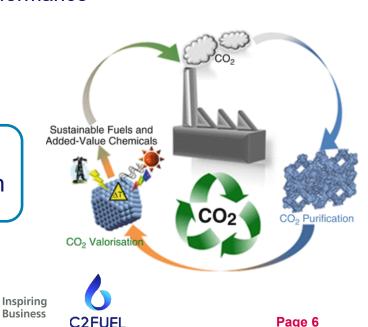

Membrane for selective water removal

Inspiring Business

Reaction and separation in the same unit Overcome thermodynamic limitations Avoid catalyst deactivation due to water adsorption

Membrane requirements:

Project goals:

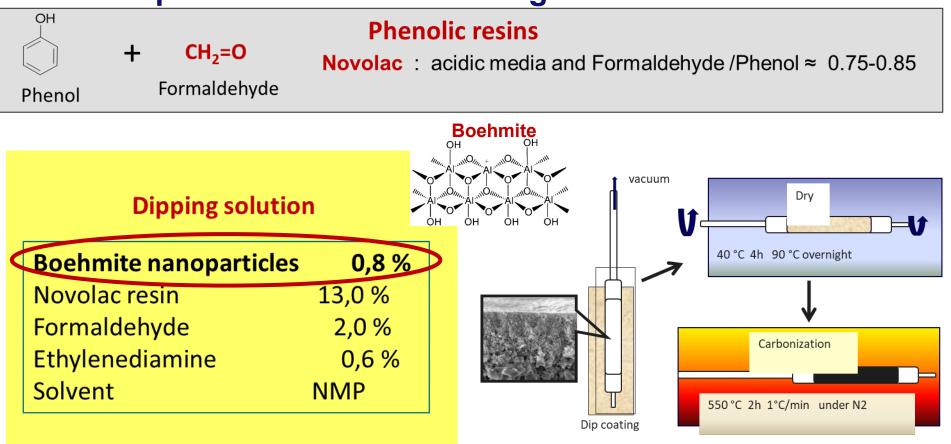

- 1. Development of carbon membranes (TECNALIA & TU/e)
 - o Synthesis of AI-CMSM with improved hydrophilicity
 - Characterization of AI-CMSM
- 2. Development of a 1D-phenomenological membrane reactor model (TU/e)
 - o Effect of membrane properties on reactor performance

TU/e tecnalia

- Optimize the operating conditions
- Propose a cooling strategy

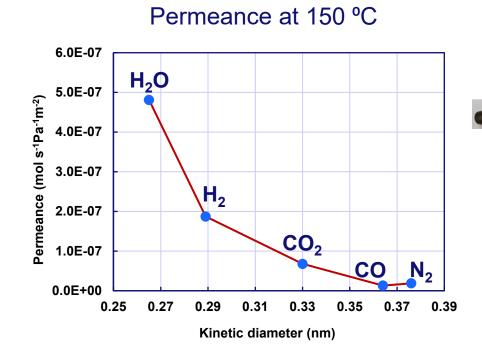
Main objective:

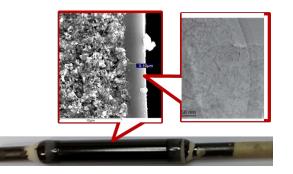
Promote a valid alternative for CO₂ valorization

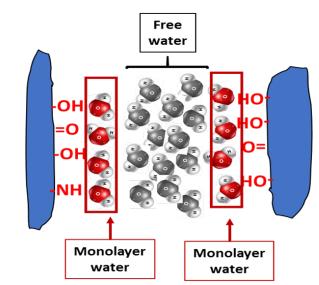

Development of Al-supported Carbon Molecular Sieve Membranes

16th-17th February 2021

Carbon molecular sieve membranes

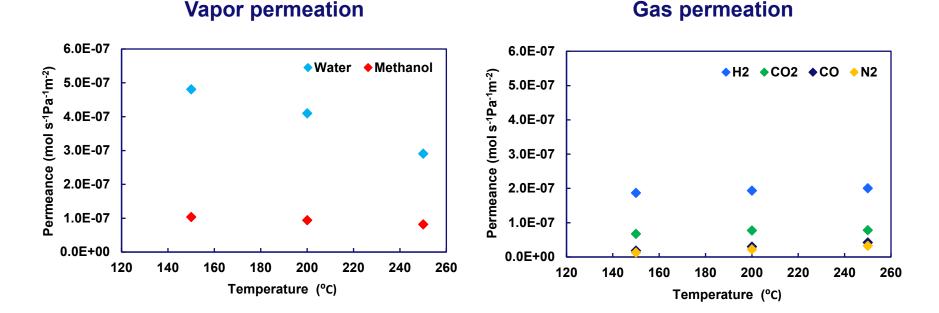

Development and manufacturing AI-CMSM





Carbon molecular sieve membranes

Development and manufacturing AI-CMSM

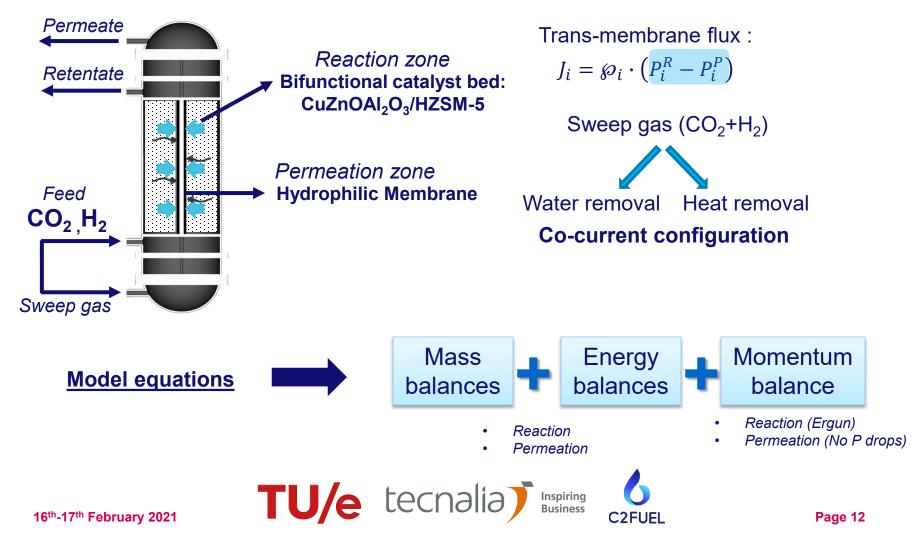


Carbon molecular sieve membranes

Development and manufacturing AI-CMSM

Single gas-vapor permeation experiment at $\Delta P = 3$ bar

Water has the highest permeance at each condition

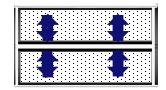

Membrane reactor model for the CO₂ hydrogenation to DME

Membrane reactor model

Reactor features and model hypotheses:

Fixed bed membrane reactor

Model equations and approach:


Reactor performances

$$X_{CO_2} = \frac{F_{CO_20}^R - F_{CO_2}^R + F_{CO_2,tmb}}{F_{CO_2,0}^R + F_{CO_2,tmb}^*}$$

$$Y_{i} = \frac{N_{c,i} (F_{i}^{R} + F_{i}^{P})}{F_{CO_{2},0}^{R} + F_{CO_{2},tmb}^{*}}$$

$$WR = \frac{F_{H_2O}^P}{F_{H_2O}^P + F_{H_2O}^R} - -$$

 $\frac{CO_2 \text{ transmembrane flow}}{F_{CO_2, tmb} = F_{CO_2, 0}^P - F_{CO_2}^P}$

 $\begin{aligned} F_{CO_2,tmb}^* &= 0 & \text{if } F_{CO_2,tmb} \leq 0 & \text{Reactant loss} \\ F_{CO_2,tmb}^* &= F_{CO_2,tmb} & \text{if } F_{CO_2,tmb} > 0 & \text{Reactant cofeeding} \end{aligned}$

Amount of water removal

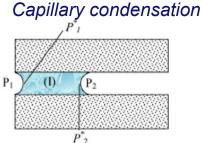
2. Optimization of the operating conditions $T_{in}^{R} T_{in}^{P} = P^{R} - P^{P}$ $SW = F_{in}^{P} / F_{in}^{R}$ Influencing the drivingforce for permeation**TUCELECO Sweep gas for heat management** $<math>P_{in}^{R} = 40 \ bar$ $T_{avg}^{R} = 200^{\circ}\text{C}$ *Fixed conditions* **Page 13**

Membrane reactor model

Assessment of the membrane optimal properties:

TU/e tecnalia

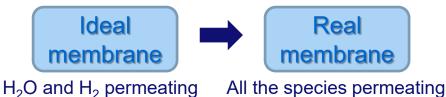
Definitions:


Permeance
$$\mathscr{P}_i \quad [mol/(Pa \cdot m^2 \cdot s)]$$

<u>Selectivity</u>

$$S_{H_20,i} = \wp_{H_20} / \wp_i$$

Main mechanism of water and methanol


permeation:

Main mechanism of gases permeation: *Molecular sieving* **Kinetic diameters**

 $H_2 < CO_2 \approx CO < DME$

Procedure:

Hypotheses:

1. CO₂ and CO same permeance

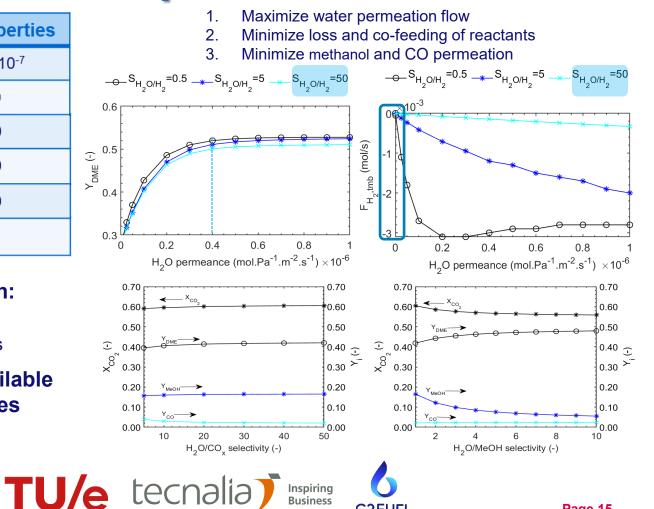
Inspiring Business

- 2. H_2O/CH_3OH selectivity ≥ 1 (slightly)
- 3. DME is not permeating (largest size and Tc=128°C)

Operating conditions						
T^R and T^P	200°C	SW	3			
P^R	40 bar	H ₂ :CO ₂	3			
ΔP	0 bar	$\Phi^R_{H_2,0}$	$1 Nm^3/h$			

Assessment of the membrane optimal properties:

According to the assumption made

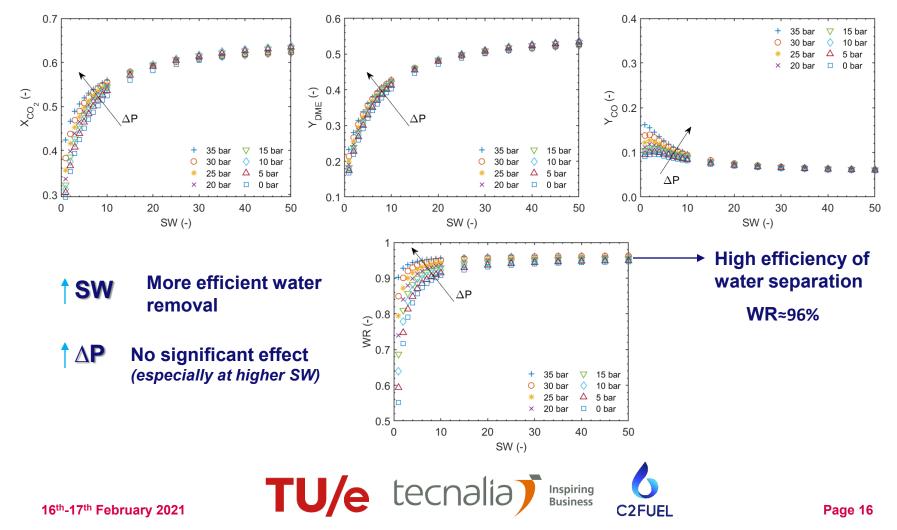

Criteria used

Membrane optimal properties				
$\mathcal{D}_{H_2O} \ (\mathrm{mol}/(\mathrm{Pa}\cdot\mathrm{m}^2\cdot\mathrm{s}) \)$	4·10 ⁻⁷			
S _{H20/H2}	50			
S _{H2} 0/CO ₂	30			
S _{H20/C0}	30			
S _{H20/CH30H}	10			
S _{H2O/DME}	∞			

Good agreement with:

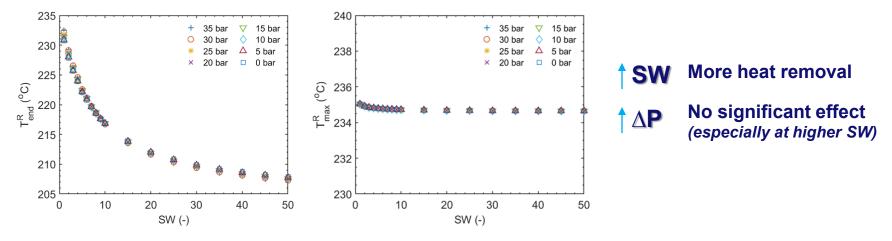
- ceramic membranes
- polymeric membranes

Not enough data available for carbon membranes


C2FUE

16th-17th February 2021

Page 15


Optimization of the operating conditions:

Effect of SW and ΔP on reaction performance

Optimization of the operating conditions:

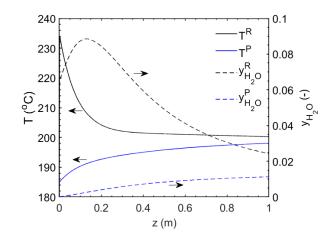
Effect of SW and ΔP on heat management

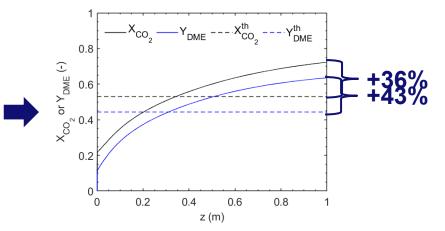
T-profile optimization criteria:

- T lower than 270-300°C (catalyst deactivation due to sintering)
- As low as possible (desired reactions: exothermic, undesired reactions: endothermic)

Inspiring Business

- Lower T guarantees higher water permeation and lower gas permeation
- Higher than 190-200 °C (catalyst activation temperature)


 $T_{in}^{P} = 185 {}^{0}C$ $T_{in}^{R} = 200 {}^{0}C$ SW = 20 $\Delta P = 5$ bar


TU/e tecnalia

Optimize heat & water removal

Membrane reactor optimal performance:

Optimal conditions		Fixed conditions		
SW	20	$\Phi^R_{H_2,0}$	1 <i>Nm</i> ³ / <i>h</i>	
ΔP	5 bar	P_{in}^R	40 bar	
H ₂ :CO ₂	3.5	T_{in}^R	200 °C	
T_{in}^P	185 °C			

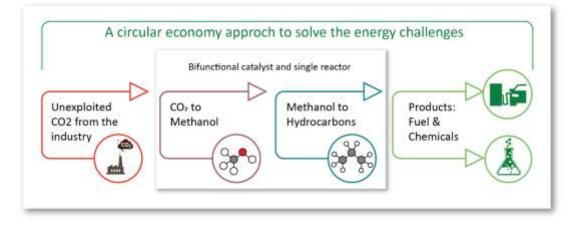
- Temperature and water concentration show similar profiles
- The efficiency of water removal is 96%

16th-17th February 2021

Conclusions

- 1. The AI-CMSM showed high water permeance and vapor/gas selectivity
- 2. There is no need to have the highest **membrane performance**. An optimum has been found for water permeance and selectivity.
- 3. The **sweep gas** promotes both **heat** and **water removal**. The temperature profile can be optimized thanks to the sweep gas inlet temperature
- 4. The cocurrent configuration has several positive effects:
 - Highest driving force for heat and water removal is at the entrance
 - Water back permeation is avoided
- 5. The operating conditions have been optimized. Considerations are:
 - There is no need to have a high ΔP
 - A sweep gas is used instead, with a higher flow rate. The sweep gas can be recirculated.
- 6. The **thermodynamic limitations** have been overcome (with a 96% efficiency of water removal)

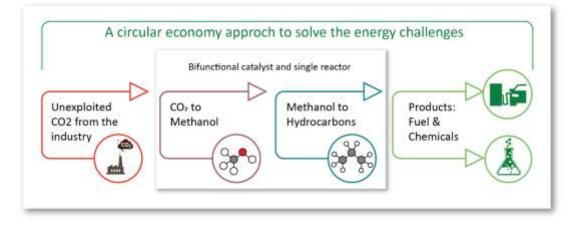
Any question?



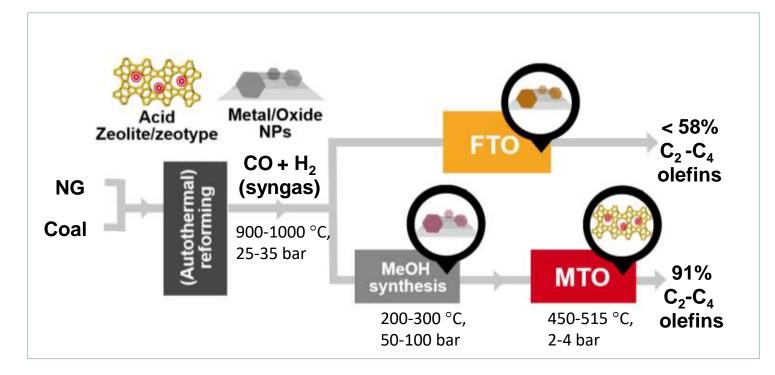
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 838014 (C2Fuel project).

*Efficient CO*₂ *conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS*

Catalyst development within the COZMOS project

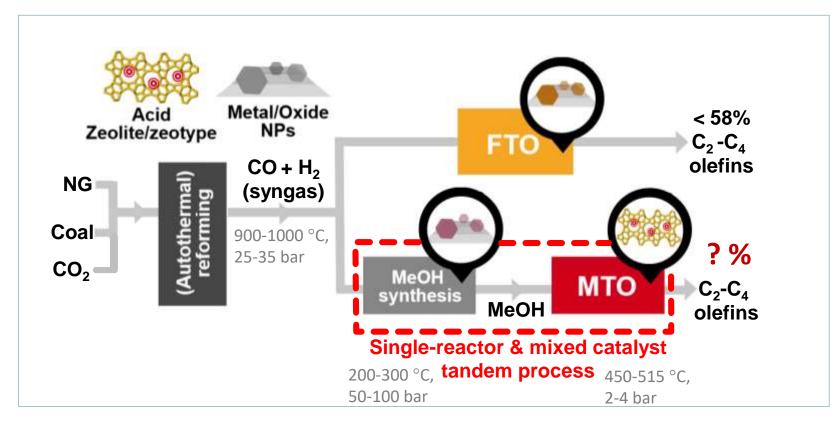

Unni Olsbye, University of Oslo

*Efficient CO*₂ *conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS*

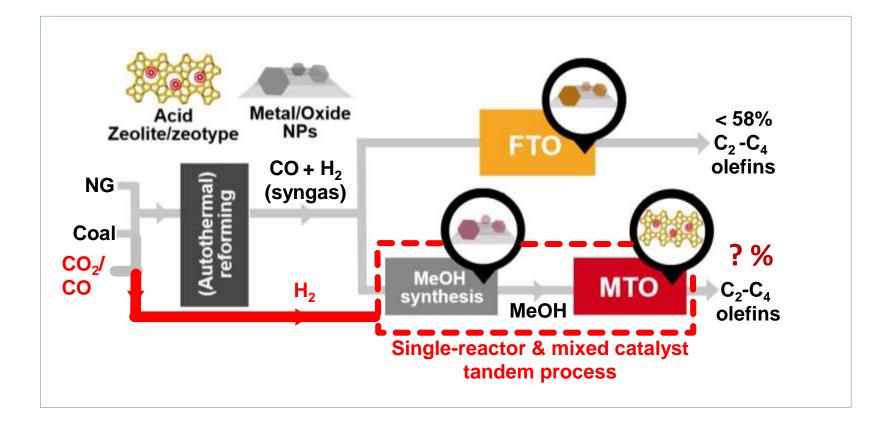


Catalyst development within the COZMOS project

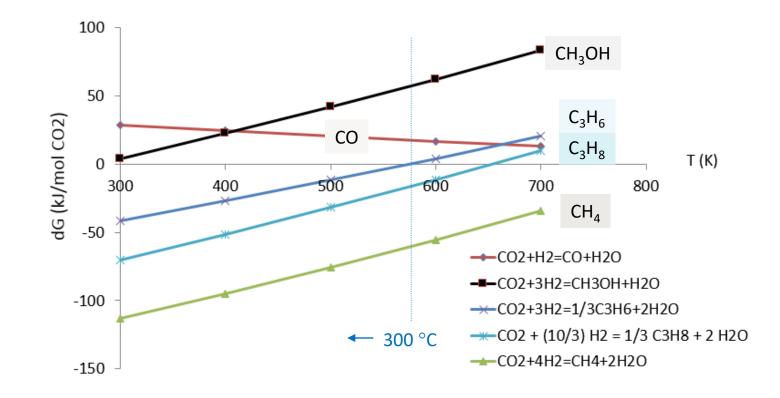
Unni Olsbye, University of Oslo



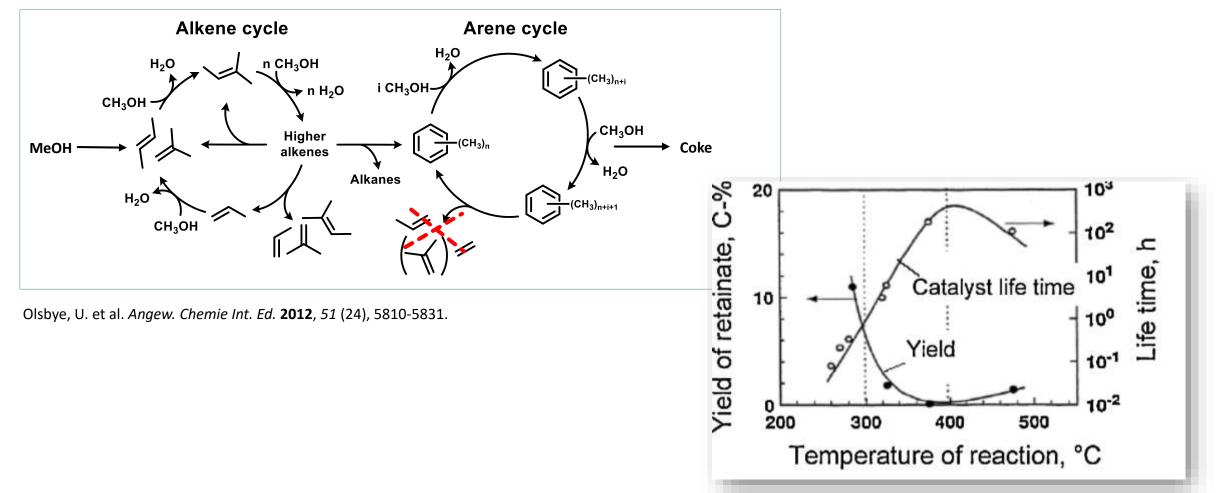
H.M. Torres Galvis, K.P. de Jong ACS Catalysis 2013, 3, 2130-2149.


J.Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, S. Kvisle Cat. Today 2005, 106, 103-107.

F. Jiao, X. Bao et al. *Science* 2016, *351*, 1065-1068.
K. Cheng, Y. Wang et al. *Angew. Chemie Int. Ed.* 2016, 55, 4725-4728.

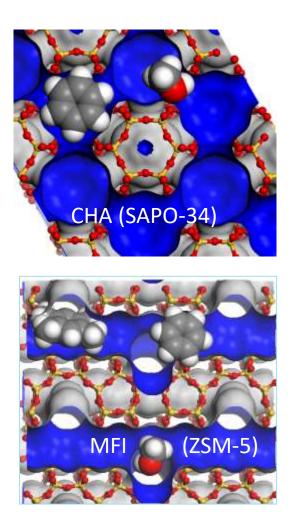


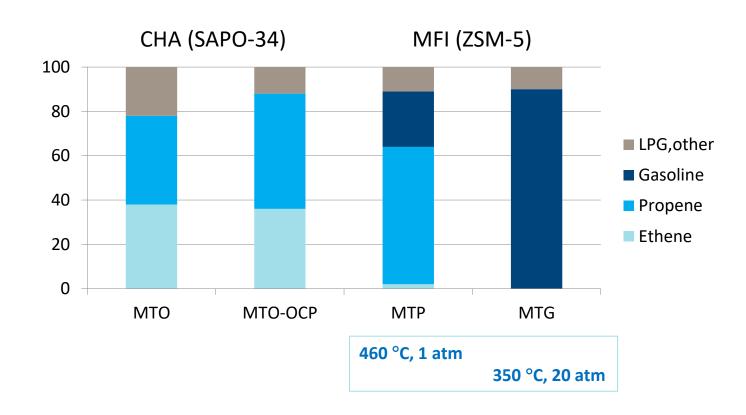
Thermodynamic considerations


Thermodynamic data from TRC Table

Tandem catalysis challenges

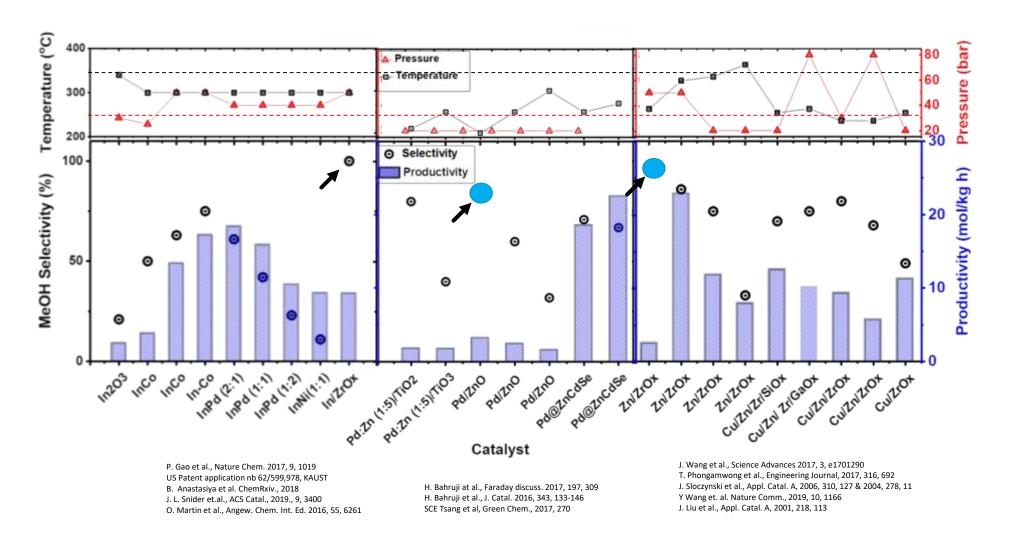
- The temperature gap -


Schulz, H., Cat. Today, 2010, 154, 183-194

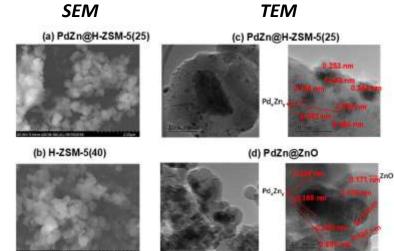


COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.


Tandem catalysis: Methanol to propane/propene candidates

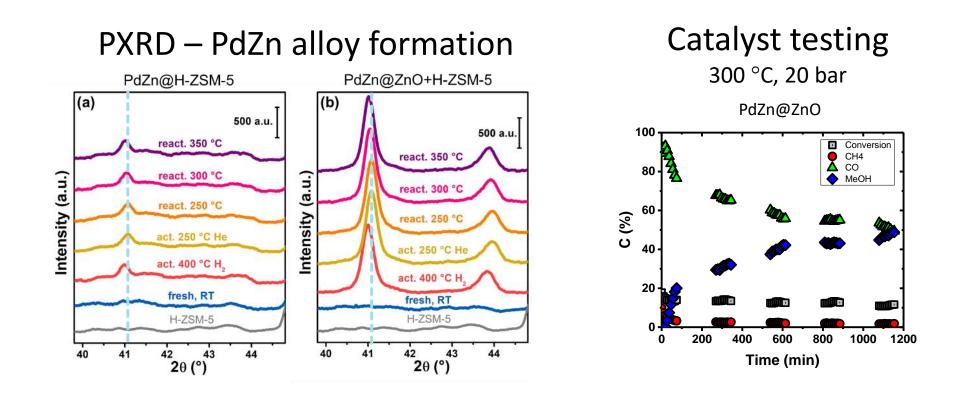
Tandem catalysis: CO₂ hydrogenation candidates



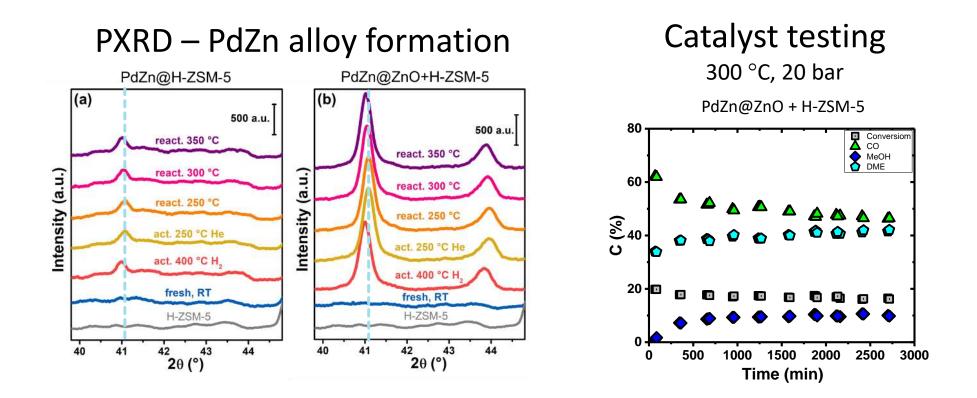
Case 1: PdZn/ZnO + ZSM-5

PdZn@ZnO: Pd salt was impregnated onto ZnO, mixed with H-ZSM-5 and pretreated in H₂ flow at 400 °C for 1 h.

PdZn@H-ZSM-5: Pd complex was grafted onto mesoporous H-ZSM-5, followed by reduction and Zn grafting, and reduction in H₂ at 500 °C for 4 h.

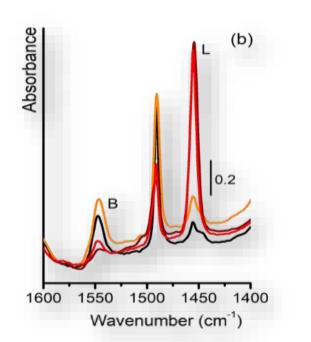

Sample	Elemental composition		Textural properties	
	Si/Al	Zn/Pd	BET area	Micropore
			(m²/g)	volume
				(cm ³ /g)
H-ZSM-5 (25)	25		420	0.176
PdZn@H-ZSM-5 (25)	25	5	348	0.121
H-ZSM-5 (40)	40		444	0.196
PdZn@ZnO		16		

CO2MOS*


PdZn/ZnO + ZSM5

CO2MOS

PdZn/ZnO + H-ZSM-5



COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS.

PdZn/ZnO + H-ZSM-5

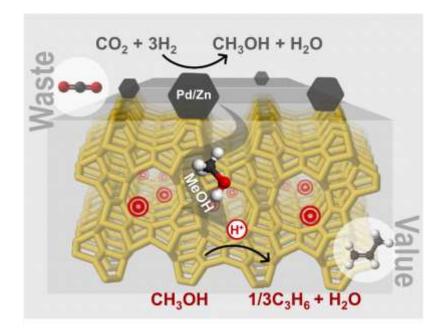
Acid sites quantification using pyridine FT-IR spectroscopy

Sample	Step	Brønsted sites (mmol/g)	Lewis sites (mmol/g)
Fresh H-ZSM-5	Si/Al = 25	0.21	0.07
	Si/Al = 40	0.15	0.07
PdZn@H-ZSM-5 (25)	As prepared	0.02	0.57
	Tested	0.02	0.46
PdZn@ZnO + H-ZSM-5 (40)	As prepared	0.11	0.05
	Activated	0.04	0.25
	Tested	0.03	0.32

Black curve: Parent H-ZSM-5(40),

Orange curve: PdZn@ZnO+H-ZSM-5(40) as-prepared sample,

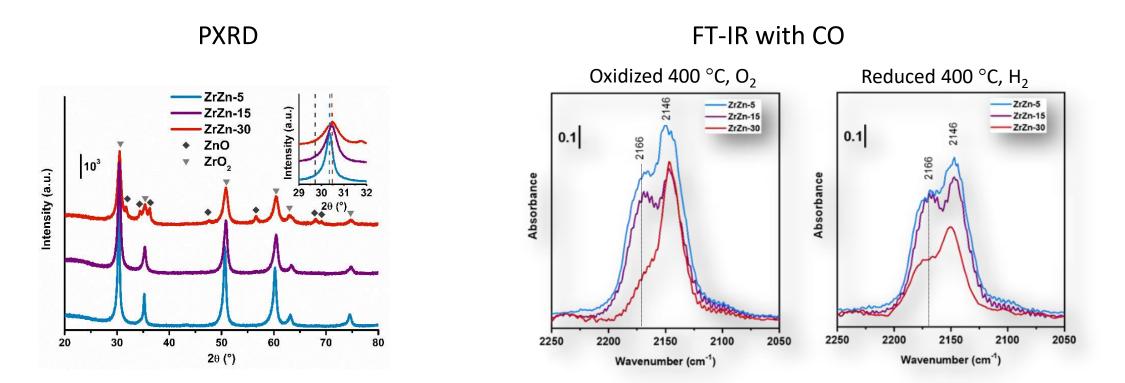
Red curve: PdZn@ZnO+H-ZSM-5(40) sample treated with H_2 at 400 °C for 1 h,


Brown curve: PdZn@ZnO+H-ZSM-5(40) tested sample.

COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

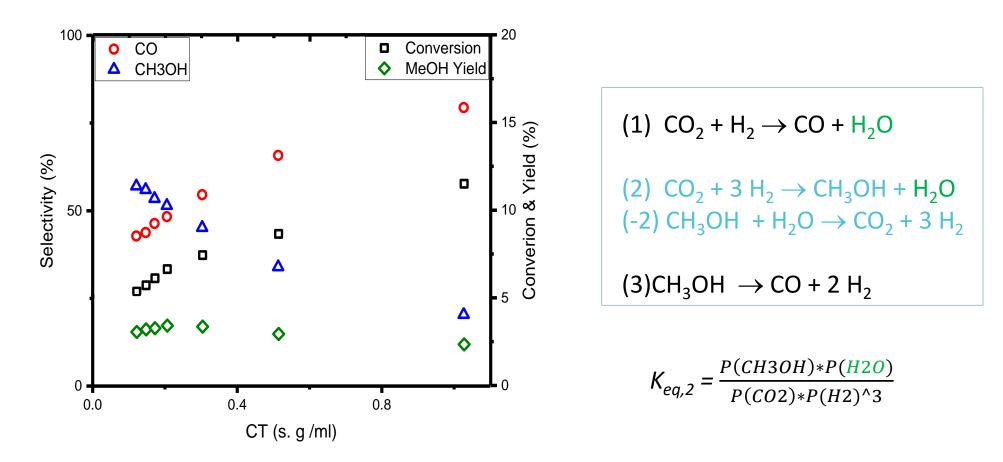
Summary and outlook – Case 1

- **PdZn alloy** maintains high methanol selectivity at 300 °C, and may be suited for the tandem process
- However, excess Zn migrates to the H-ZSM-5 zeolite, where it ion exchanges onto the Brønsted acid sites (confirmed by Zn K edge EXAFS measurements), thereby hindering hydrocarbons formation


Paper 1. Ahoba-Sam, C.; Borfecchia, E.; Lazzarini, A.; Bugaev, A.; Isah, A.A.; Taoufik, M.; Bordiga, S.; Olsbye, U.; On the conversion of CO₂ to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty? *Catalysis Science & Technology*, **2020**, *10*, 4373–4385.

Case 2: Zr_{1-x}Zn_xO₂ + H-ZSM-5 (or H-SAPO-34)

 $Zr_{1-x}Zn_xO_2$ (X = 0.05, 0.15 or 0.30) was prepared by co-precipitation and eventually mixed with H-ZSM-5 (or SAPO-34) before testing.

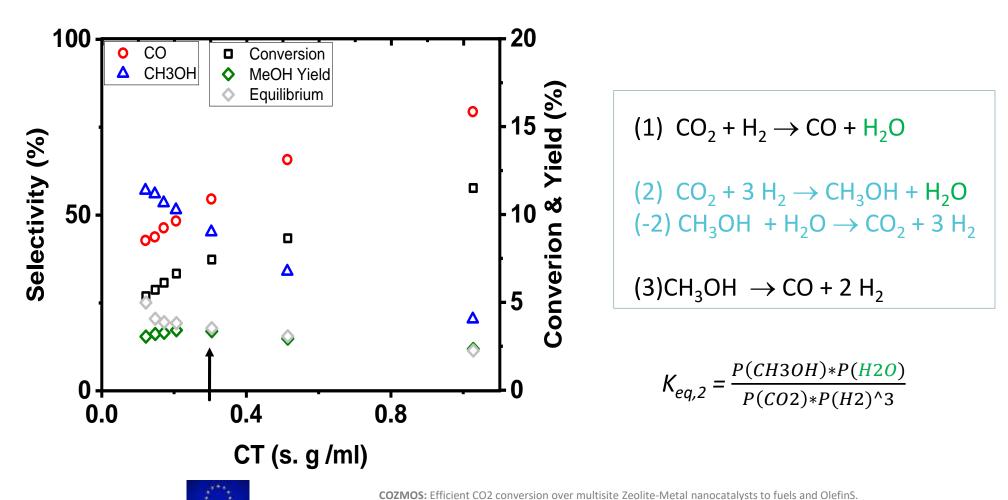


COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

CO2MOS

Zr_{1-x}Zn_xO₂ alone

Catalytic testing in $H_2/CO_2 = 3$ at 350 °C, 30 bar

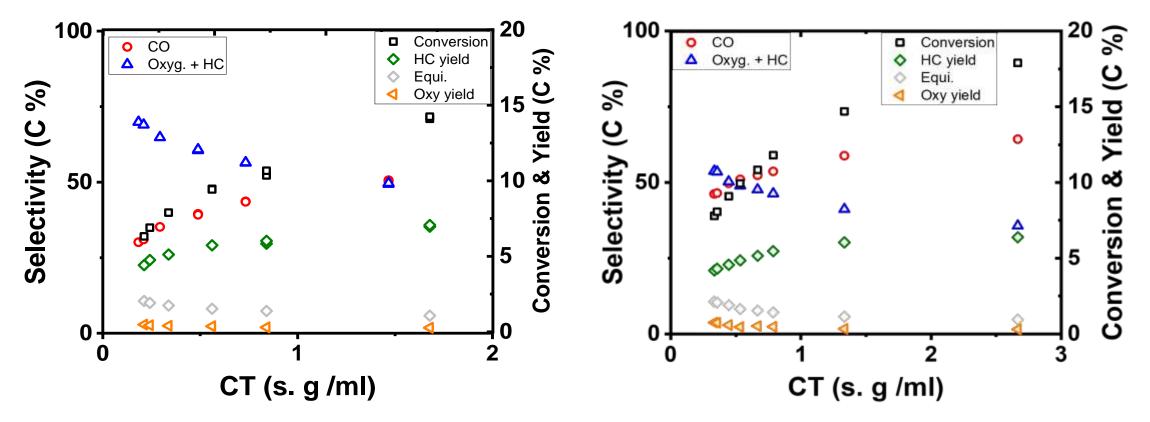


COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS.

CO2MOS

Zr_{1-x}Zn_xO₂ alone

Catalytic testing in $H_2/CO_2 = 3$ at 350 °C, 30 bar

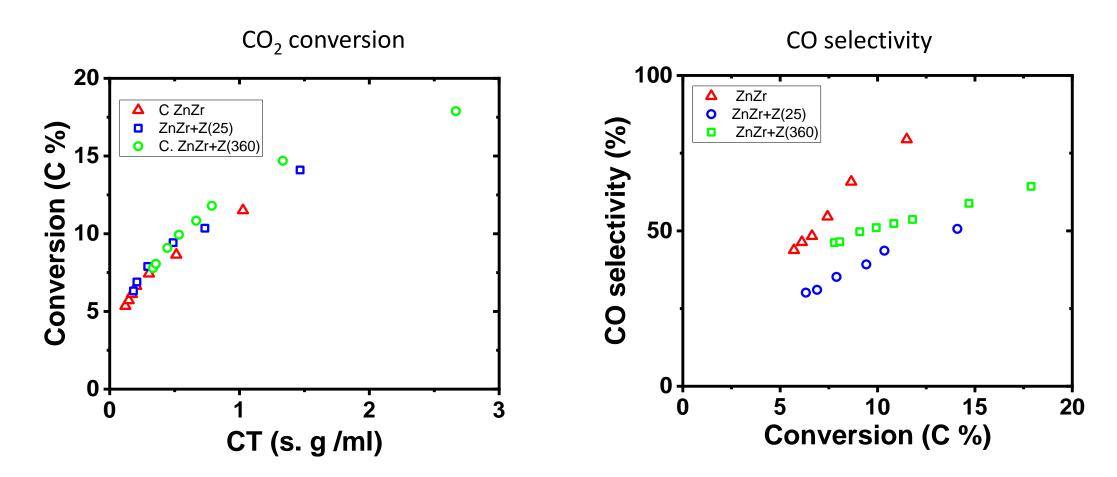

CO2MOS*

$Zr_{1-x}Zn_{x}O_{2} + H-ZSM-5$

Catalytic testing in $H_2/CO_2 = 3$ at 350 °C, 30 bar

Si/Al = 25

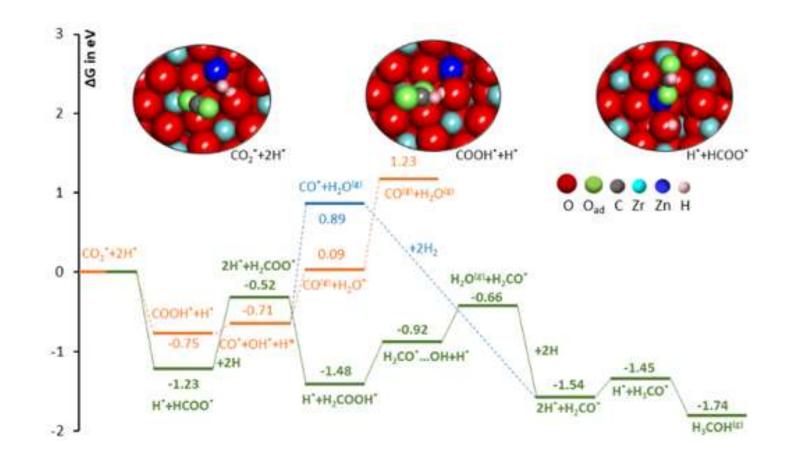
Si/Al = 360



COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS.

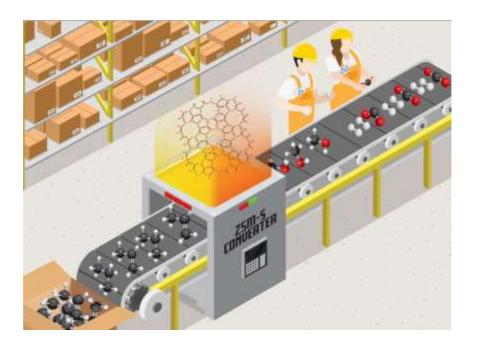
$Zr_{1-x}Zn_{x}O_{2} + H-ZSM-5$

Catalytic testing in $H_2/CO_2 = 3$ at 350 °C, 30 bar



COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS.

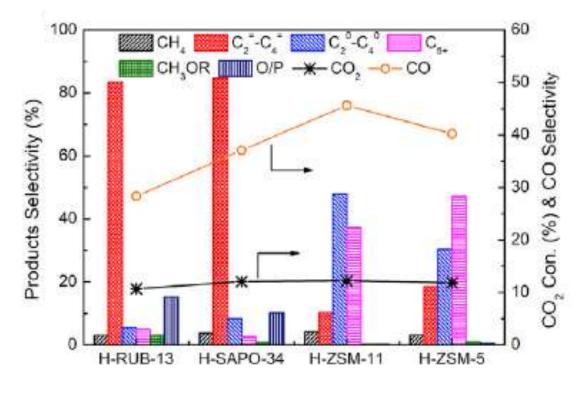
CO2MOS*


ZnZrO – computational studies

Summary and outlook – Case 2

- Studies of the ZnZrO+H-ZSM-5 system shows that methanol is a primary product from CO₂, and both CO and hydrocarbons are formed from methanol, over the tandem catalyst
- Methanol is formed via the formate route over ZnZrO
- CO₂ hydrogenation is the rate-limiting step of the tandem reaction

Paper 2. Ticali, P.; Salusso, D.; Ahmad, R.; Ahoba-Sam, C.; Ramirez, A.; Shterk, G.; Lomachenko, K.A.; Borfecchia, E.; Morandi, S.; Cavallo, L.; Gascon, J.; Bordiga, S.; Olsbye, U.
 CO₂ hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO₂/Zeolite catalysts. Catalysis Science & Technology, 2020, https://doi.org/10.1039/D0CY01550D.


CO2MOS

Case 3: ZnCeZrO + H-RUB-13

SAPO-34

RUB-13

Illustration from: J. H. Kang, J.H et al.,

 $Zn_{0.5}Ce_{0.2}Zr_{1.8}O_4$ + zeolite, 350 °C, 10 bar, H₂/CO₂ = 3:1, GHSV = 4,800 mL/gh

ACS Catal. 2019, 9, 6012.

CO2MOS

ZnCeZrO + H-RUB-13

SAPO-34

RUB-13

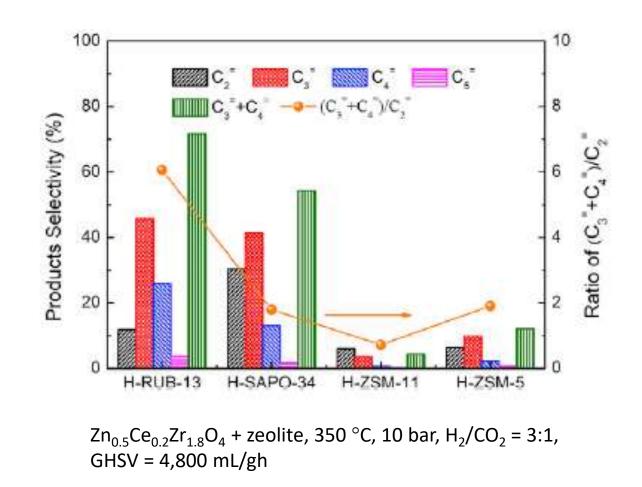
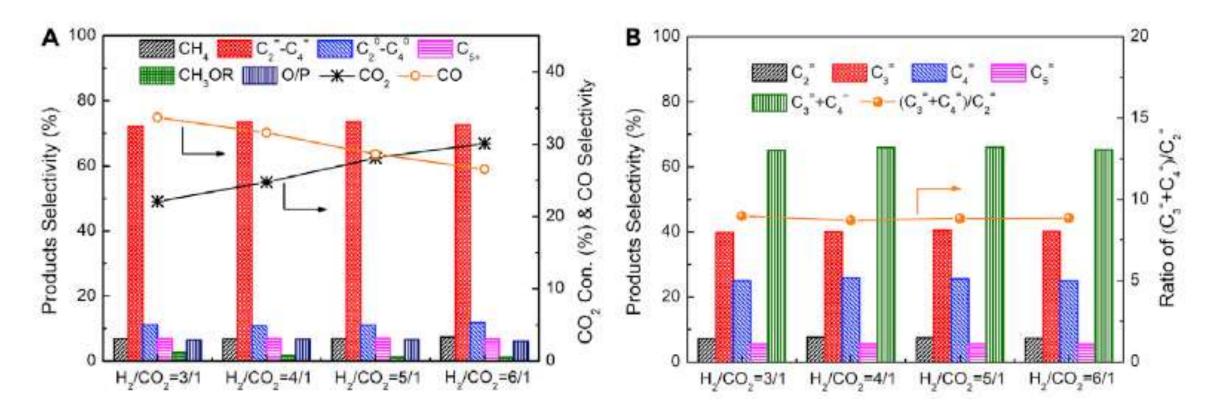
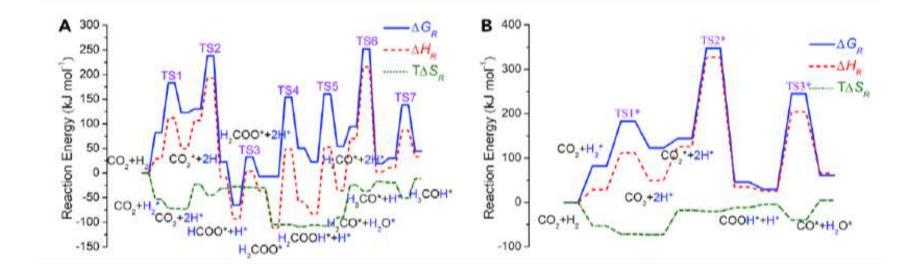



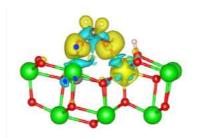
Illustration from: J. H. Kang, J.H et al., ACS Catal. **2019**, 9, 6012.

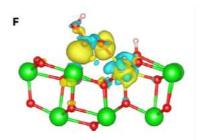
CO2MOS*

ZnCeZrO + H-RUB-13

Influence of test conditions

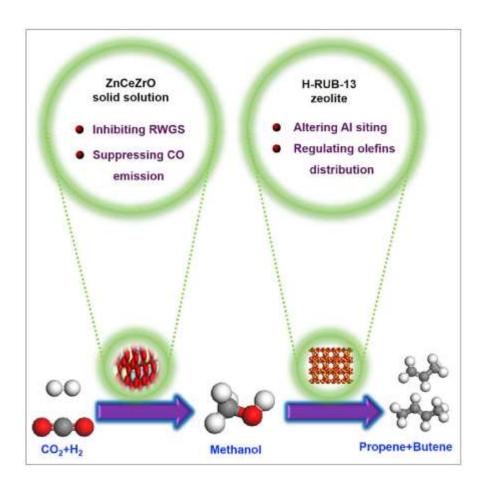



 $Zn_{0.5}Ce_{0.2}Zr_{1.8}O_4$: RUB-13 = 1:2, 350 °C, 35 bar, H_2/CO_2 = 3:1 – 6:1



COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

ZnCeZrO + RUB-13



CO2MOS*

Summary and outlook – Case 3

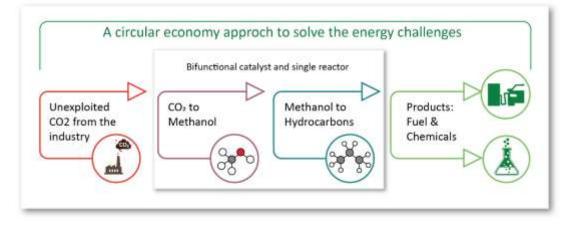
- Studies of the **ZnCeZrO+H-RUB-13** system shows that small changes in the cavity-window size of the zeotype has substantial impact on hydrocarbon product distribution.
- C₃⁼ and C₄⁼ account for 90% of light olefins due to the promotion of the alkene-based cycle
- CH₃OH is formed on Zn_{0.5}Ce_{0.2}Zr_{1.8}O₄ via the formate - methoxyl intermediates mechanism.

Paper 3. Wang, S.; Zhang, L.; Zhang, W.; Wang, P.; Qin, Z.; Yan, W.; Dong, M.; Li, J.; Wang, J.; Lin He,L.; Olsbye, U.; Fan, W., Selective conversion of CO₂ into Propene and Butene. *Chem* 2020, *6*, 1-20.

Conclusions and Outlook

Case 1. Studies of the **PdZn+H-ZSM-5** system shows that methanol selectivity of PdZn/ZnO may be maintained under MTO-relevant conditions, but leaching of Zn into the zeolite, thereby poisoning the Brønsted acid sites, is a challenge.

Case 2. Studies of the **ZnZrO+H-ZSM-5** system shows that methanol is a primary product from CO_2 , and both CO and hydrocarbons are formed from methanol, over the tandem catalyst. CO_2 hydrogenation is the rate-limiting step of the tandem reaction.


Case 3. Studies of the **ZnCeZrO+H-RUB-13** system shows that small changes in the cavity-window size of the zeotype has substantial impact on hydrocarbon product distribution. CH_3OH is formed selectively on $Zn_{0.5}Ce_{0.2}Zr_{1.8}O_4$ via the formate - methoxyl intermediates mechanism

Overall, the three case studies yield important insight in function – performance correlations for the methanol-mediated conversion of CO_2 and H_2 to propane and propene

*Efficient CO*₂ *conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS*

Thanks to all COZMOS WP1 partners for their contributions, and

Thank you for your attention!

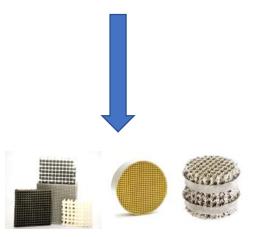
COZMOS: Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 837733.

CO₂ Capture Using 3D Printed PEI Adsorbents Supported By Carbon Nanostructures

Shreenath Krishnamurthy¹, Richard Blom¹, Carlos Adolfo Grande¹, Kari Anne Andreassen¹, Vesna Middelkoop², Marleen Rombouts² and Adolfo Bendito Borras³

1. SINTEF Industry, Oslo, Norway 2. VITO, Mol, Belgium 3. AIMPLAS, Valencia, Spain

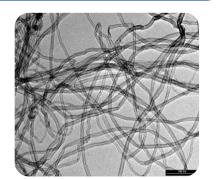
Shreenath.Krishnamurthy@sintef.no

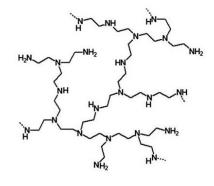


Introduction

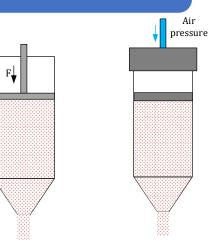
High pressure drop

Low pressure drop and better mass transfer


- CO₂ capture from power plants is associated with large capture footprint
- Fast cycling and higher flowrates can lower footprint
- Structured sorbents are advantageous over pellets for lowering the footprint
- 3D printing offers good control over shape of the sorbent and channel geometry
- Aim of this work : Evaluate a 3D printed monolith for post-combustion carbon capture:
 From equilibrium data to process simulations

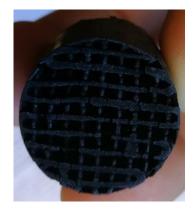


3D printing by Micro-Extrusion / Robocasting



PEI-CNT-water based viscous paste

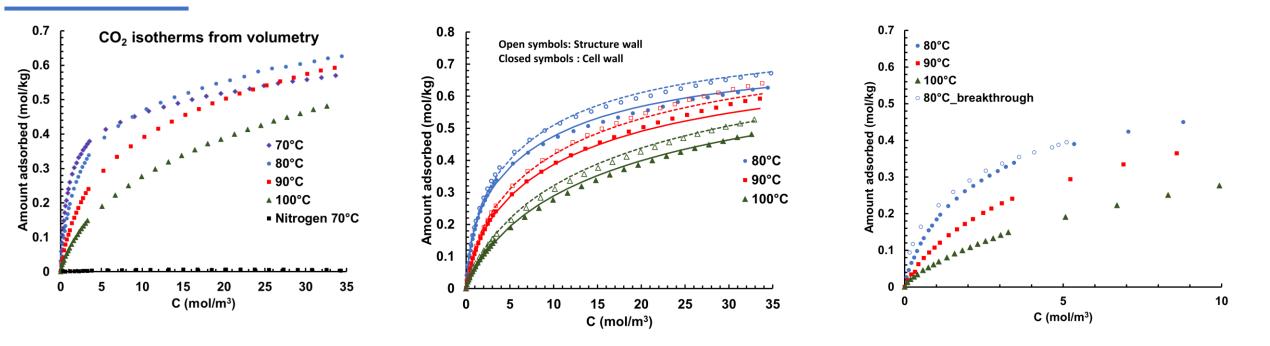
Extrusion through nozzle **at room temperature**


Nozzle diameter 1.2mm

Piston-based and pneumatic dispensing

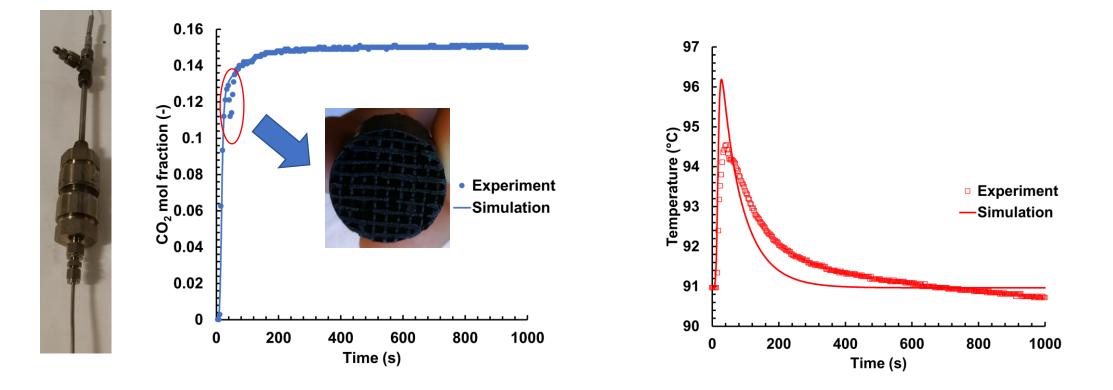
Computer controlled deposition of fibres

Drying



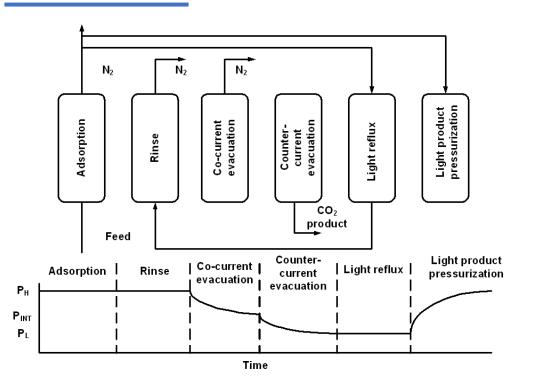
Furnace drying at 40°C Channel diameter 1.4 mm Wall thickness 0.6 mm

CO₂ adsorption equilibrium



- Volumetric experiments to measure adsorption isotherms
- > One structure was crushed and isotherms on cell wall material and monolith wall material measured for different temperatures
- \blacktriangleright Breakthrough experiments carried out with 15% CO₂ in N₂ feed, desorption with pure N₂
- \blacktriangleright Heat of adsorption for CO₂ = -100 kJ/mol, CO₂ adsorption capacity at 0.15 bar and 90°C = 0.3 mol/kg
- Minor variations observed in CO₂ adsorption capacity within the 3D printed adsorbent

CO₂ adsorption kinetics



- > Dynamic column breakthrough experiments (2 structures stacked one on top of the other, 15% CO₂, 85% N₂)
- > Adsorption part of the breaktrhough experiments analysed with a 1D process model
- Fitting the LDF and heat transfer co-efficient values for 3 temperatures.

Process simulation and optimization

1. Patton et al., **2004**, Chem Eng Res Des, 82, 199-209

2. Rezaei and Webley 2009, Chem Eng Sci, 64,5182-5191

3. Khurana and Farooq, 2016, Chem Eng Sci, 152, 507-515

SINTEF

The system : 15% CO₂ , 85% N₂ , 90°C Length of column 1 m : diameter 0.29 m Isotherms and LDF coefficient values obtained from volumetry and breakthrough 1D non-isothermal, non-isobaric model

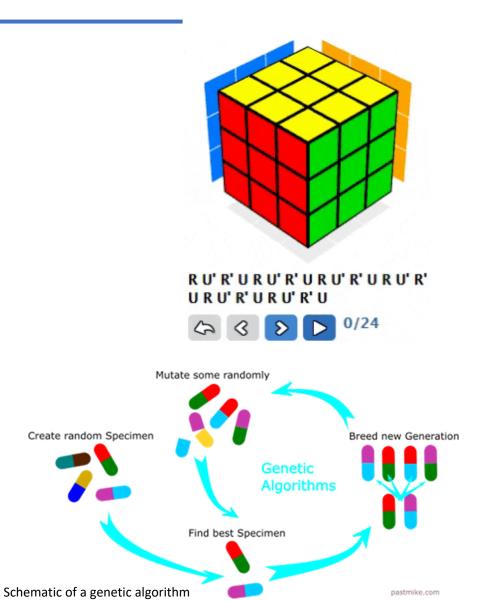
Pressure drop¹

$$\frac{-dP}{dZ} = \frac{28.4u\mu}{d_{ch}^2}$$

Axial dispersion²

$$D_L = D_m + \frac{(2ud_{ch})^2}{192D_m}$$

 CO_2 purity = $\frac{\text{mass CO2 in evac}}{\text{total mass evac}}$

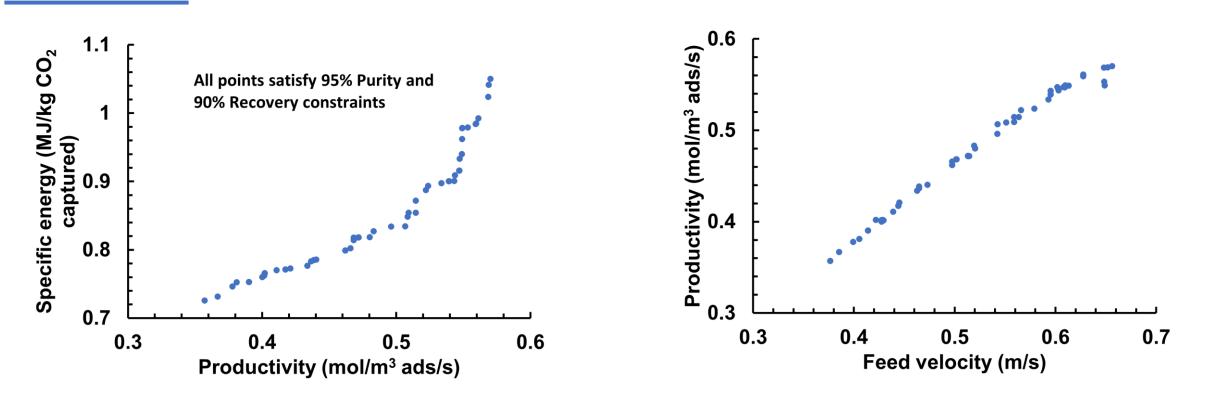

 $Productivity = \frac{mass CO_2 in evacuation}{volume of adsorbent X cycle time}$

 $CO_2 recovery = \frac{mass CO2 in evac}{mass CO2 in feed} \qquad Specific energy = \frac{Compression + Evacuation energy}{mass CO2 in evacuation}$

Aim of process study

- Identify minimum specific energy and maximum productivity
- Target CO_2 purity \ge 95%, Target recovery \ge 90%

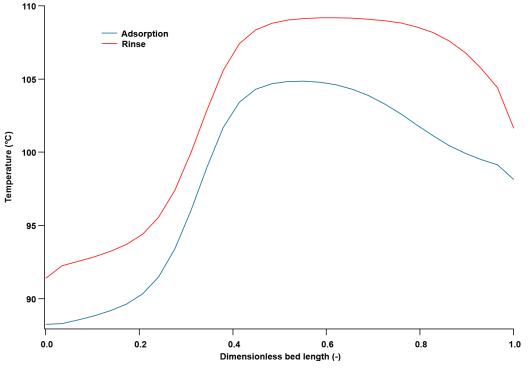
Genetic algorithm



- Multiple variables affect the performance of the adsorption
- ProcessA parametric study may not present the optimum of a
 - process
- Nature inspired algorithms such as genetic algorithms can give the true minimum of the process
- Multiple objectives (Min. specific energy and maximum productivity)
- Specify the bounds of variables (decision variables) that affect process performance and number of simulations needed
 - Genetic algorithm based optimization (NSGA-II) in MATLAB
 - 30 generations X 140 populations = 4200 simulations

Results from process optimization

- Minimum specific energy = 0.72 MJ _{Electric}/kg CO₂ captured, Maximum productivity 0.57 mol/m³ ads/s
- Cycle time = 2.5 3 minutes (adsorption step duration = 30-40 s)


Conclusions & future work

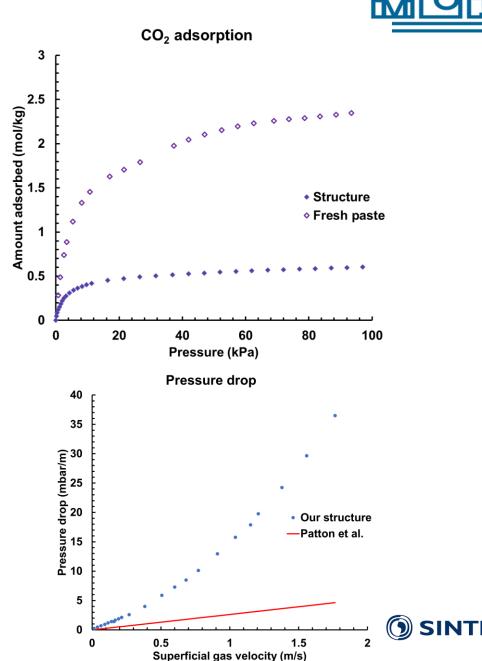
> 95-90 purity-recovery targets achieved

- Minimum specific energy = 0.72 MJ _{Electric}/kg CO₂ captured
- > Maximum productivity= 0.57 mol/m³ ads/s
- Adsorbent to be "married" to its best cycle to understand true potential : Need for alternative cycle configuration
- \succ Effect of moisture on CO₂ adsorption to be studied

> High temperatures in a cyclic process can affect sorbent stability

Temperature profiles in the column

Conclusions & future work


Challenges with 3D printing

- Instability in printing due to phase separation necessitated the use of additives
- > Reduction in capacity in comparison with pristine paste
- High shrinkage due to the presence of water

Challenges in the process

- High temperature swings and presence of O₂ can reduce stability of sorbent
- > Measured pressure drop higher than predicted pressure

drop

Acknowledgement

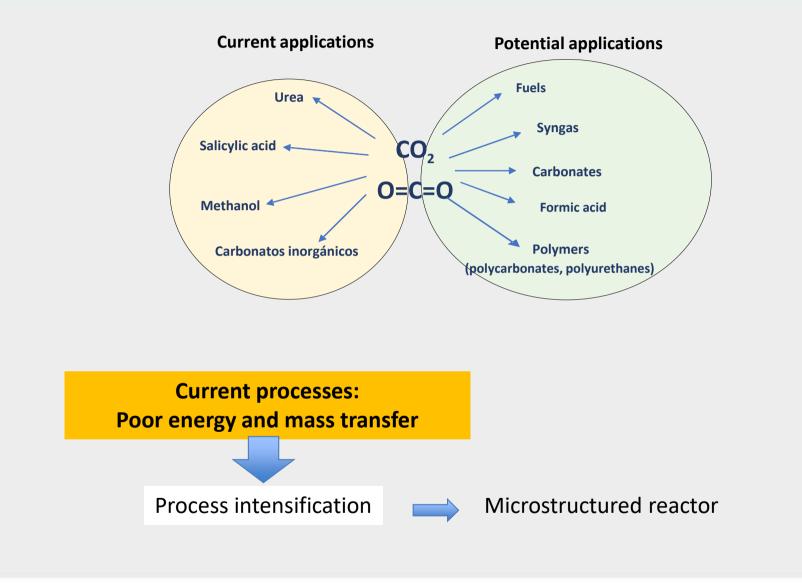

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/e - EINDHOVEN - 16-17 FEBRUARY 2021

> This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760884 (CARMOF). For more information on this project visit the project web page https://carmof.eu/

Questions ?

Process intensification in the conversion of CO₂ with a milli-structured reactor

S. Perez, S. Prieto

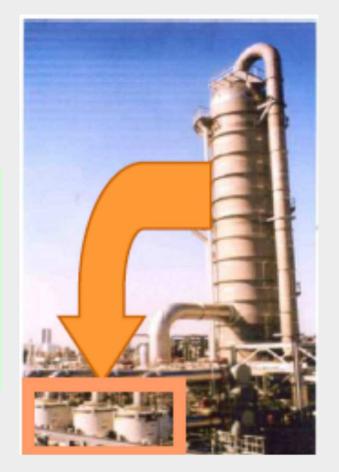


International Workshop on CO₂ capture and Utilization 16-17 February 2021

Outline

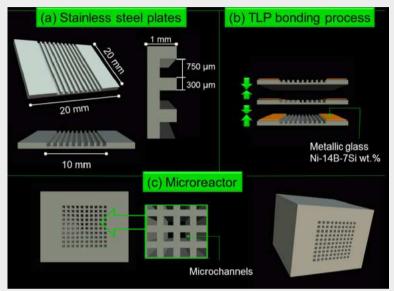
- 1. Process Intensification: microreactors
- 2. Tecnalia's millichannel reactor
- 3. Catalytic tests in Sabatier reaction
- 4. Millichannel reactor scaling-up
- 5. Conclusions

What is a micro or a millireactor?


Denomination according to Kiwi-Minsker & Renken (2005):

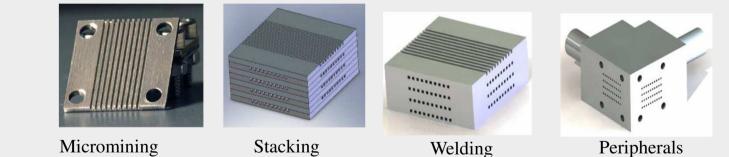
- 10 1000 microns of ID: microchannel reactors
- 1 10 millimeters of ID: millichannel reactors

It's a system to obtain processes:

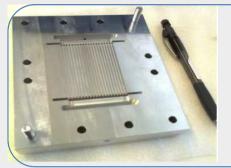

- more efficient,
- with lower operation costs,
- that generates low amount of waste,
- safer,
- smaller
- and with higher productivity.

In chemical synthesis, the use of millireactors improves the mass and energy transfer between the products and the catalyst.

Conventional fixed bed reactor vs 40 times intensified reactor. (Source: Dow Chemical, proceso HOCI)

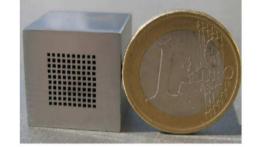


O.H. Laguna et al. / Chemical Engineering Journal 275 (2015) 45-52


Disadvantages:

- Manufacturing method with several phases
- Catalyst deposition
- Scale-up

Stages needed for the manufacture of microreactors. Adapted from *S. Cruz et al. (2011). Chemical Engineering Journal 167. 634-642*



Methanol reforming to H2

http://dx.doi.org/10.1016/j.ijhydene.2015.11.047

PROX reaction

O.H. Laguna et al. 2011 doi:10.1016/j.cej.2010.08.088

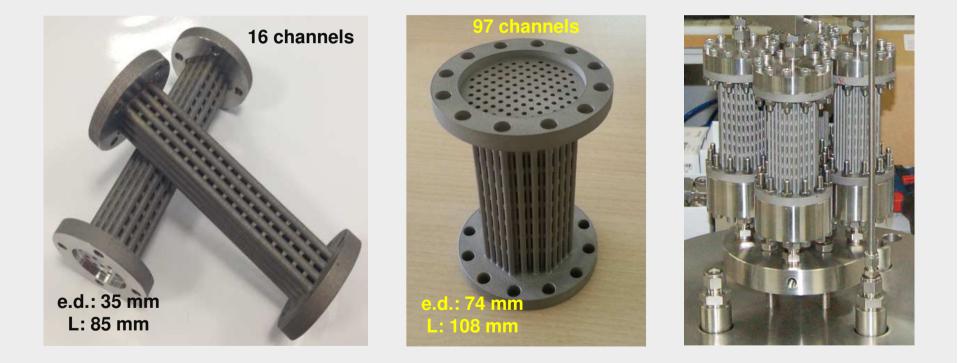
Catalytic microchannels

CO2 hydrogenation to methane

Pacific Northwest National Laboratory USA. K.P. Brooks et al. Chemical Engineering Science 62 (2007) 1161 – 1170

Nitrobencene hydrogenation to aniline

www.hzdr.de/db/Cms?pOid=42528&pNid=3367

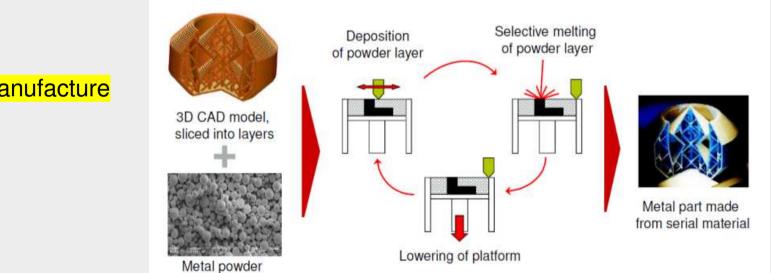

Fischer-Tropsch reaction

Velocys, Inc. 2013

2. Tecnalia's millichannel reactor

Based on new additive technologies, Tecnalia R&I has developed a **microstructured reactor** consisting of several tubes with internal diameter in the range of millimeters (1-4) **enhancing both the mass and energy transfer.**

The reactor can be designed and integrated in a pilot plant for a specific process



EP17382756 (2017) "Method for continuous production of 2,3-butanediol WO2018/024764A1 "Reactor for Multiphasic reactions"

2. Tecnalia's millichannel reactor

Design features of the reactor

- a high length / diameter ratio
- a good heat transmission / evacuation
- a dimensional uniformity of tubes
- a good thermal and mechanical stability
- a simple manufacture method in one piece, "without layers"
- catalyst filling the tubes

Reactor manufacture Selective Laser Melting

2. Tecnalia's millichannel reactor

Features	Advantages
Intimate contact between substrates/catalysts	 High mass transfer Decreases the residence time Increases 10-20% performance vs conventional reactors
High area/volume ratio	 High heat transfer: stainless steel AISI 316L Minimizes hot spot formation Limits the propagation of an eventual flame
Low volume	 Savings in production materials, space and energy Reduced pressure drop
Reduced diffusion distances	Minimizes hot spot formationHigh heat transfer
Scaling-up (not by increasing reactor size)	 Faster implementation of the process on an industrial level Flexibility to be adapted to the production needs
Thermic fluid introduced through reactor gaps	 Removes heat continuously through the entire reactor Manages heat in an efficient and flexible way

2. Tecnalia's millichannel reactor

The millichannel reactor technology is appropriate for **exothermic reactions** and allows to overcome **mass transference** limitations

Our applications

- Hydrogenation
- Butanediol from acetoin (Patented)
- Fischer-Tropsch synthesis
- CO₂ transformation

 $CO_2 + 4H_2 = CH_4 + 2H_2O (RENOVAGAS)$ $CO_2 + 3H_2 = CH_3OH + H_2O (LOWCO2)$ $2CO_2 + 6H_2 = DME + 3H_2O (CO2FOKUS)$

3. Catalytic tests in Sabatier reaction

85mm

Comparison traditional fixed-bed vs. millichannel reactor

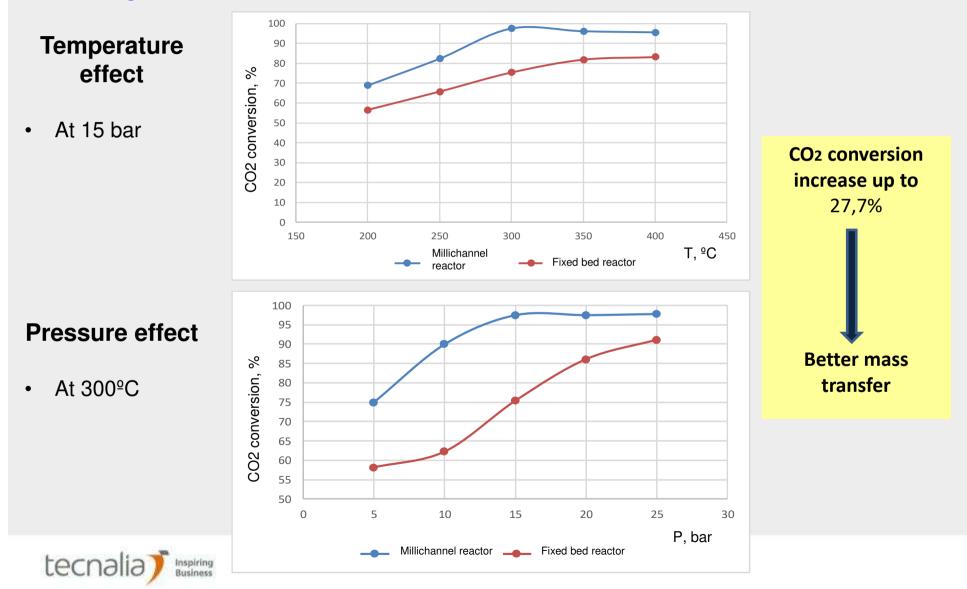
Fixed-bed: 9 mm inner diameter

Millichannel reactor:

16 channels

1.75 mm inner diameter

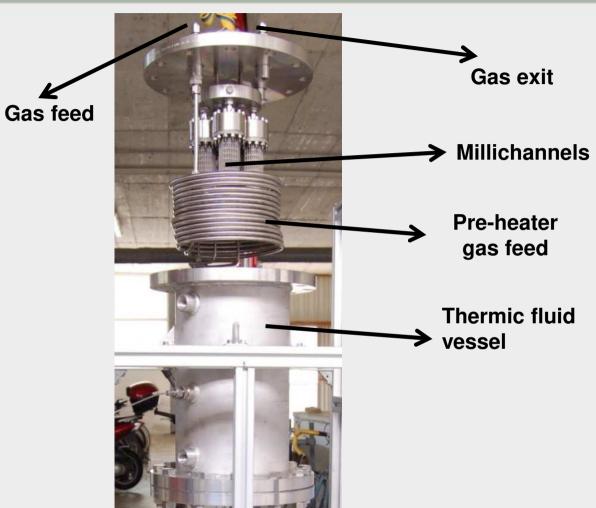
 $CO_2 + 4H_2 = CH_4 + 2H_2O$


CATALYST Ni/ <i>p</i> ·Al ₂ O ₃		
Metal content (Ni) 25.2 %		
Particle size	< 220 μm	
Bulk density0.85 gr/cm3		

REACTION CONDITIONS		
GHSV	80 NL. g _{cat} ⁻¹ .h ⁻¹	
H ₂ /CO ₂	4	
Catalyst mass	2.56 g.	

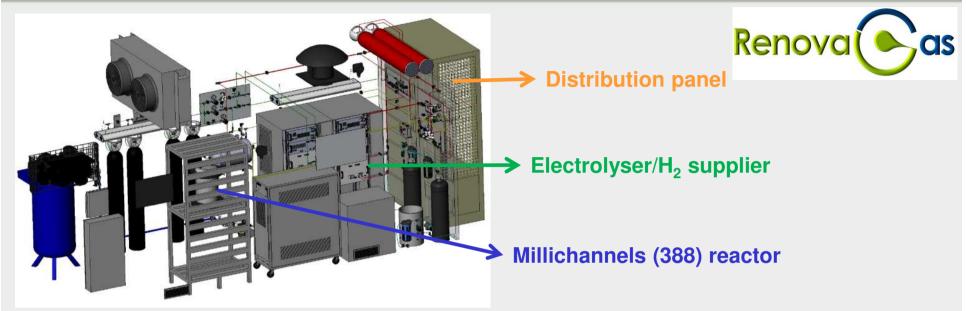
3. Catalytic tests in Sabatier reaction

Comparison traditional fixed-bed vs. millichannel reactor



4. Millichannel reactor scaling-up

15kW pilot plant CO₂ methanation


- Feeding: cleaned biogas
- TRL 5
- Number of channels: 388
- ICP-CSIC catalyst (Ru/CeO₂)

		Input		Output		
H ₂ , %	Vol	CO ₂ , % <u>Vol</u>	CH₄, % <mark>Vol</mark>	H₂, % <mark>Vol</mark>	CO ₂ , % <u>Vol</u>	CH₄, % <mark>Vol</mark>
53,	5	13,4	33,1	2,7	1,7	95,6

RENOVAGAS project,funded by the **Spanish Ministry of Economy and Competitiveness** (MINECO) within the call Retos-Colaboración 2014 (RTC-2014-2975-3).

4. Millichannel reactor scaling-up

5. Conclusions

- Tecnalia has develop a millichannel reactor for exothermic reactions.
- The reactor:
 - allows a good mass and energy transfer
 - is easy to scale-up by adding channels
 - has a flexible design
 - has a huge number of potential applications
 - has been validated for Sabatier reaction: better results than fixed-bed

reactor.

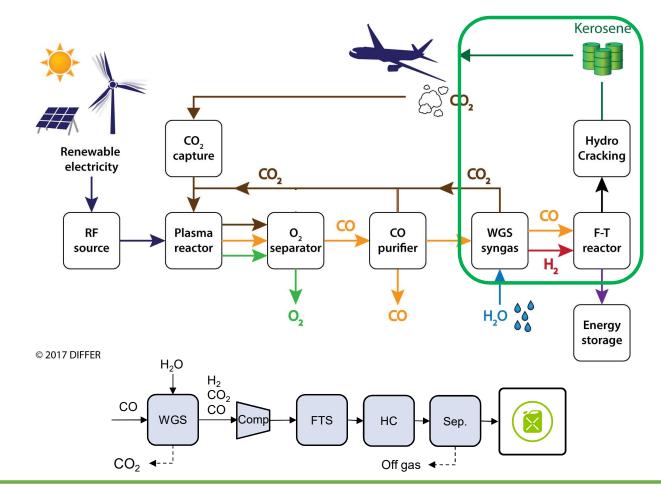
Thank you for your attention

Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO₂, syngas formation and Fischer-Tropsch synthesis

The KEROGREEN syngas route to alternative fuels and chemicals

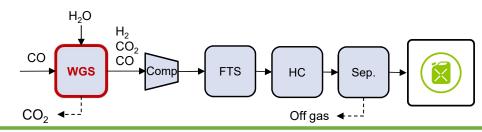
Francisco Vidal Vázquez (Dr. Sc.)

Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT)


International Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

KEROGREEN: CO route to kerosene

Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop



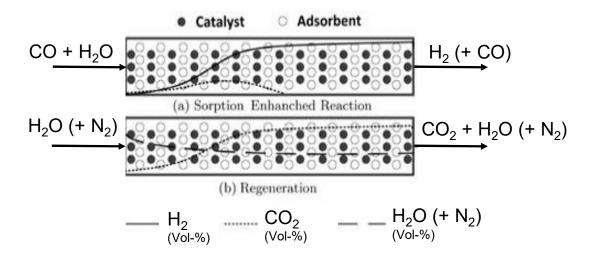
WGS reaction:

 $CO + H_2O \rightleftharpoons CO_2 + H_2$

$$\Delta H_R^0 = -41.1 \ kJ/mol$$

- Chemical equilibrium:
 - Independent with pressure
 - Favourable at low temperature
- Different catalysts for different temperatures
 - 300 400 °C: Fe/Cr-cat (HT-WGS)
 - 200 300 °C: Cu/Zn-cat (LT-WGS)

Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop


Sorption-Enhanced Water-Gas Shift (SE-WGS)

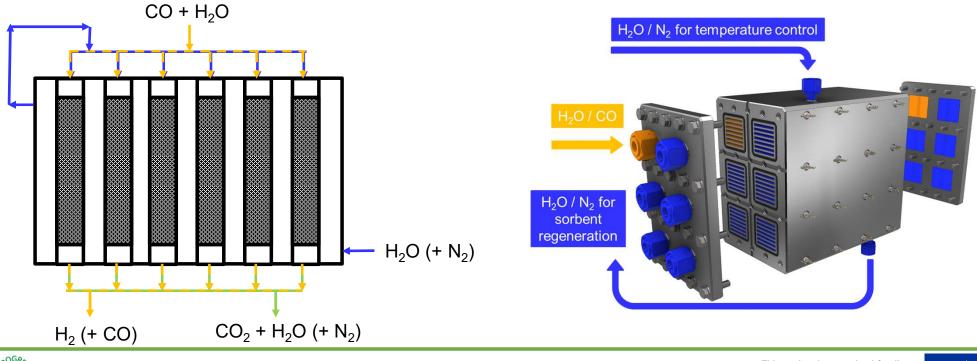
SE-WGS:

$$CO + H_2O \rightleftharpoons \mathcal{O}_2 + H_2$$

Sorbent

- Solid sorbent is used for *insitu* CO₂ removal
 - Dynamic operation of reactor
- The sorbent is mixed with the catalyst and placed in the reactor
- Other advantages:
 - Higher conversion
 - Reduction of required steam for the WGS
 - Overall-simplification of the process (WGS + CO₂ removal)
 - CO₂ recycle up-stream of the process

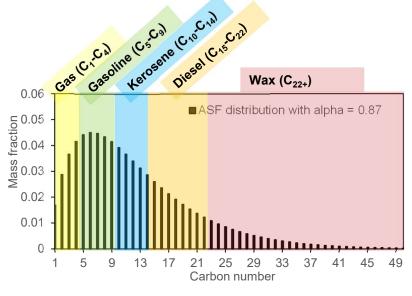
Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

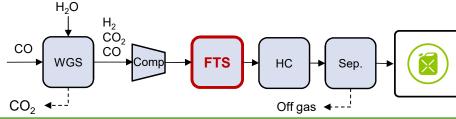


SE-WGS reactor for KEROGREEN

- SE-WGS reactor has 6 different beds which are operated dynamically in order to keep constant outlet flow of syngas
 - Cycle of Reaction/Depressurization/Regeneration/Pressurization

Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

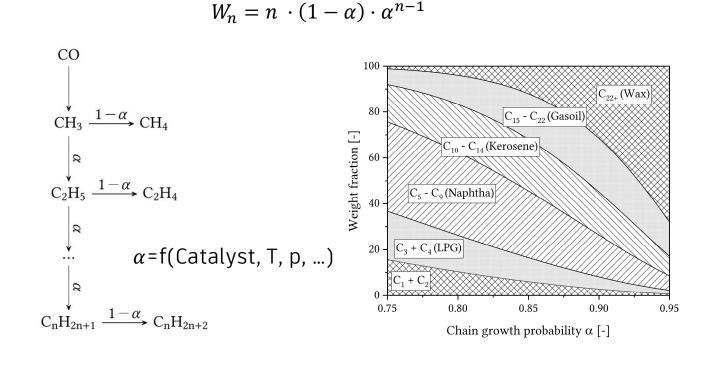



Fischer-Tropsch Synthesis

Highly exothermic heterogeneously catalysed polymerization reaction

 $n CO + 2n H_2 \rightarrow (CH_2)_n + n H_2O$ $\Delta H_R^0 = -158 \, k/mol$

- Chemical equilibrium:
 - Favourable at high pressure and low temperature
- Different catalysts for different application:
 - 300 400 °C: Fe-based cat.
 - Shorter chain hydrocarbons, mainly olefins
 - 200 250 °C: Co-based cat.
 - Long chain hydrocarbons, mainly parafins


Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

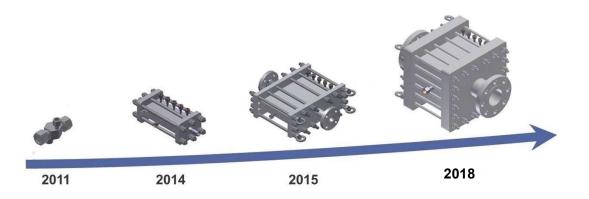
Fischer-Tropsch Synthesis: ASF distribution

 Product distribution can be approximately represented via Anderson-Schulz-Flory (ASF) model – Chain growth probability

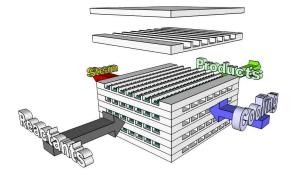
0.12 n-Alkane iso-Alkane 0.10 n-/iso-Alkene Weight fraction [-] 90'0 80'0 0.02 0.00 20 30 10 40 50 60 Carbon number [-]

using Co-based catalyst

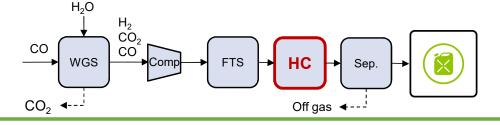
- Higher CH₄ selectivity
- Lower C₂ selectivity
- Olefin formation
- Formation of alcohols (low)

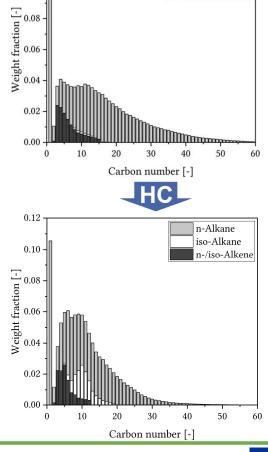

Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

Fischer-Tropsch Synthesis reactor for KEROGREEN


- Microstructured reactor cooled by water evaporation
 - Compact reactor
 - Excellent control of reaction temperature
 - Good performance at wide range of reaction conditions
 - Good performance under dynamic operation
- Developed at KIT-IMVT \rightarrow Commercialized and upscaled by INERATEC

Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

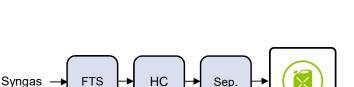

n-Alkane iso-Alkane

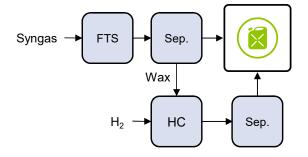

n-/iso-Alkene

Hydrocracking of heavier FTS products 0.12 Hydrocracking (HC) basic example reaction: 0.10 Weight fraction [-] CH_3 + H₂ \rightarrow C_xH_y + C_zH_w Typical operating conditions:

250-350 °C

- 20-50 bar
- Bifunctional catalyst (Metal/Zeolite)
- Purpose of HC:
 - Increase liquid fuel fraction (remove waxes)
 - Decrease alkene (olefins) content \rightarrow not applicable to kerosene
 - Increase isomer content \rightarrow improve cold flow properties

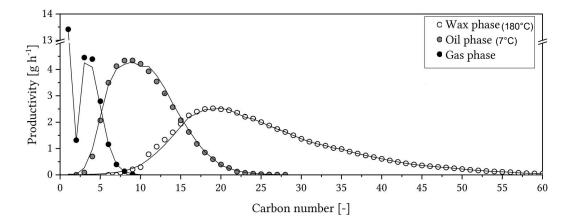

CH₃

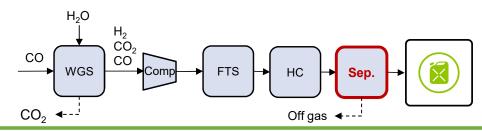

Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

Hydrocracking of FTS products

- HC general considerations:
 - Partial conversion of waxes (C₂₂₊) in order to avoid overcracking
 - Process design considerations:
 - HC of the full FTS outlet:
 - Simpler process configuration
 - Risk of secondary cracking (overcracking) due to CO in the gas phase
 - Cracking of non-wax fraction can happen
 - HC only of the wax phase:
 - More complex process configuration
 - Pure H₂ to the hydrocracker
 - Better product distribution

Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

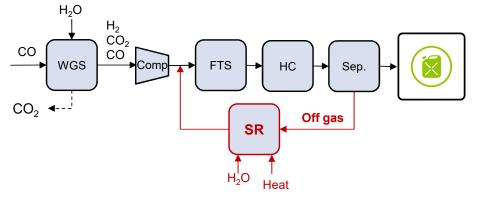


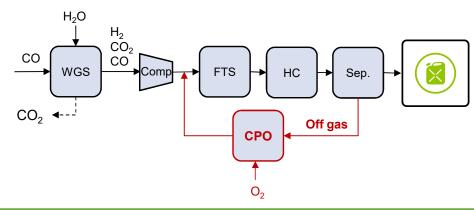

Product separation

Flash separation

- Hot flash (180-220 °C) → Wax product
- Cold flash (5-10 °C) → Liquid product
- Rest → Gas phase (Off-gas)

- Distillation is required for sharp separation of product
 - Kerosene grade only achievable by distillation


Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop



Off-gas recirculation

- Off-gas composition \rightarrow H₂, CO, methane, C₂, C₃, C₄, C₅(traces of C₆₊), maybe CO₂ too
- Options for off-gas recirculation:
 - Steam reforming (SR)

• Catalytic partial oxidation (CPO).

Dr. Francisco Vidal Vázquez – Int. Workshop on CO₂ Capture and Utilization, 16-17 February 2021, Online Workshop

- Conclusions
 - Not full selectivity to kerosene can be achieved (< 50 %)
 - However, other valuable products such as gasoline, diesel and waxes are obtained.
 - Isomerization stage still might be required to achieve fuel grade
- Other general considerations for process integration
 - Heat and material integration between the different components of the KEROGREEN plant is crucial for maximizing energy and carbon efficiencies
 - Maximize energy and carbon efficiency
 - Difference when using fossil fuels as raw material. Cost structure changes (more OPEX) and plant size changes
 - Techno-economic and LCA analyses are the ultimate test to decide what could be the best option

Francisco Vidal Vázquez Institute for Micro-Process Engineering, Karlsruhe Institute of Technology Francisco.vidal-vazquez@kit.edu www.imvt.kit.edu

Acknowledgements: Tabea Stadler Peter Pfeifer Robin Dürrschnabel Georg Rabsch Lucas Brübach Hannah Kirsch

THANK YOU FOR YOUR ATTENTION

RELATED PUBLICATIONS

T. J. Stadler, P. Barbig, J. Kiehl, R. Schulz, T. Klövekorn, and P. Pfeifer, "Sorption-Enhanced Water-Gas Shift Reaction for Synthesis Gas Production from Pure CO: Investigation of Sorption Parameters and Reactor Configurations," *Energies*, vol. 14, no. 2, p. 355, 2021

H. Kirsch *et al.*, "CO2-Neutral Fischer-Tropsch Fuels from Decentralized Modular Plants: Status and Perspectives," *Chemie-Ingenieur-Technik*, vol. 92, no. 1–2, pp. 91–99, 2020

INTERNATIONAL WORKSHOP ON CO₂ CAPTURE AND UTILIZATION TU/e - EINDHOVEN - 16-17 FEBRUARY 2021

Session 3B (chairperson Oana David)

11:45-12:05 Msc. A. Sliousaregko - Industrial membrane requirements for CO₂ removal from different gas mixtures - Current practices and developments

12:05-12:25 Dr. I. Kim - Technologies demonstration in REALISE

12:25-12:45 Mr. Paul Cobden and Prof. C. Abanades - Pilot preparation for demonstration in the C4U project

12:45-13:05 Mr. T. Swinkels - Decentralized FA based power generators

13:05-13:25 Dr. L. Roses - Design and development of a membranebased post-combustion CO₂ capture system

Image: Processe Image: Processe

Industrial membrane requirements

for CO₂ removal from different gas mixtures -

Current practices and developments

Anastasia Sliousaregko, R&D Process Engineer, <u>asliousaregko@dmt-et.nl</u> Yndustrywei 3, 8501 SN Joure, Netherlands

Who are we?

Our mission: to create a clear and prosperous future

- Engineering firm specializing in biogas upgrading and gas desulfurization
- Over 150 references and more than 30 years of experience
- Global provider of solutions that help build a sustainable future
- Award-winning portfolio

Offices, Sales & Service

Your local, global solutions provider

International

Membrane industrial requirements

Post-combustion flue gas capture Natural gas sweetening Biogas upgrading

For the full state-of-the-art report

Bi Co Mem

Post-combustion flue gas capture

Membrane industrial requirements

Mitigation of CO₂ emissions with (CCS)

- Insufficient incentive for the industrial parties
 - Costly overall process (capture, transport and storage)
 - DAC at low TRL. Delocalized emitters are more expensive
 - CO₂ capture range of 35-60 €/ton higher than EUA of 25-40 €/ton
- CO₂ separation techniques
 - Chemical/Physical absorption (Amines as ref.)
 - Membrane separation
 - o Adsorption-absorption by solid materials
 - Calcium Looping
 - Cryogenic distillation

Industrial requirements

- 4-20% CO₂ ingas from power generator
 - Low/Atmospheric pressure
 - Vapour, O_2 , $SO_{x'}$, $NO_{x'}$, NH_3 , ...
 - High flows 40,000 Nm³/h
- To be competitive with amines or 90% CO₂ capture for installed prices not less than 50 €/m²

Petra Nova, Texas US (2016-2019), Amine absorption commercial plant

Value	Unit
>2,250	GPU
>30	
100	°C
7	bar
< 100*	€/m²
	>2,250 >30 100 7

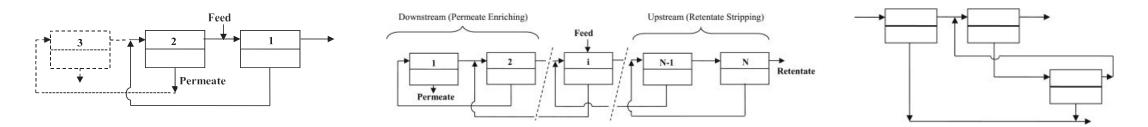
*Target set by the BioCoMem project

Haibo Zhai (2019)

State of the art – Post combustion (1/2)

Other requirements

Compatibility and stability
 Lifetime


• Fabrication and packaging

• Fouling

Membrane-based PCC

- PIM, PEO, TR, PI high performance polymeric-based membranes
- FSC pilot testings
 - promising under humidified conditions (5 m³(STP)/(m²·h·bar) and CO₂/N₂ > 500), NTNU

Configurations

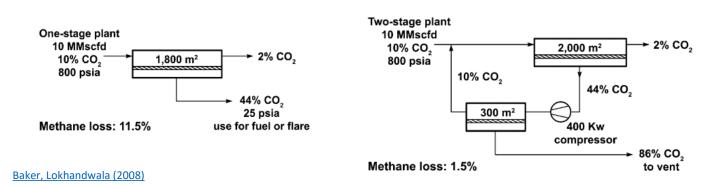
Kalipour et al (2015)

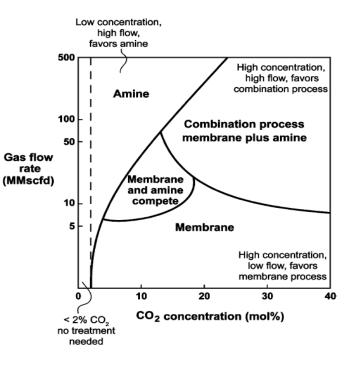
TU/e

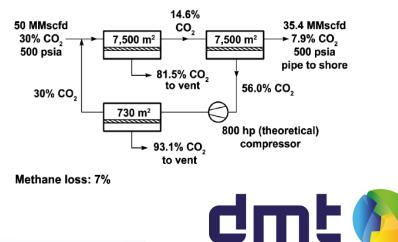
State of the art – Post combustion (2/2)

Natural gas sweetening

Membrane industrial requirements




Current practices


- Amine scrubbing (higher flows, lower CO₂ concentrations)
- Membrane separation (5-10% market share)
 - Polymeric: CA, PA, PI, perfluoro-polymers
 - Silicone composite
 - Hybrid amine membranes

Configurations

- Pretreatment (plasticization)
 - (aromatics, heavy hydrocarbons, oil mist and particulates)
- 1-stage (gas-wells), 2-stage (higher stream) and 3-stage (off-shore)

International

State of the art – Natural gas (1/2)

Industrial requirements

- From ~8% CO₂/ 80% CH₄
 - \circ H₂O, N₂, H₂S
 - o 20,000 200,000 Nm³/h
 - Atmospheric pressure
- Grid quality
 - \circ H-gas: > 96 vol% CH₄
 - L-gas: 88-92 vol% CH₄
 - \circ Other parameters
 - WI, calorific value, total sulfur, etc
- Permeance and module size
- Asymmetric hollow fibers
- 4 12" module diameter

State-of-the-art materials

- Polymeric (PEBA, PEO-based)
- Facilitated transport
- Composites (Mixed-matrix membranes)
- Carbon molecular sieve

Network	Gas	Pressure	Pressure (Netherlands)
HTL	G-gas and H-gas	usually > 16 bar	> 45 bar(a)
RTL	Mostly G-gas	about 4-16 bar	11 – 40,5 bar(a)
RNB	Mostly G-gas	< 4 bar	9 / 4 / < 4 bar(a)

Sweet natural gas	Value	Unit
P _{co2}	> 100*	GPU
CO ₂ /CH ₄ selectivity	50 [*]	
CO2	<2,5	%
Temperature	5-30	°C
Design pressure	Depends	bar

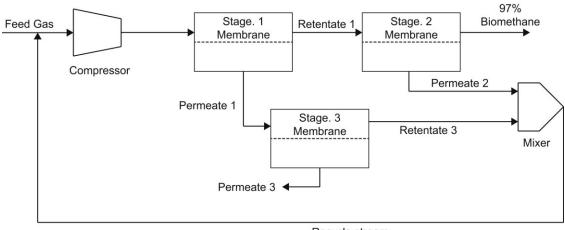
*Target set by the BioCoMem project

For H-gas grid 80% removal efficiency

State of the art – Natural gas (2/2)

Biogas upgrading

Membrane industrial requirements



Current practices

- Water scrubbing
- Membrane separation (36% market share by 2025)
 - Industrially dominant polymeric membranes: CA, Psf, PI
- Chemical scrubbing
- PSA

Configurations

- CH₄ recovery
- Specific energy
- Specific area
- Cost
- Pressure
- Pretreatment

Recycle stream

✓ 2-stage – 2-4% CH4 slip*
✓ 3-stage – 0,5-1% CH4 slip*
*Depending on the membrane supplier

State of the art – Biogas (1/2)

Industrial requirements

- From ~45% CO₂/ 55% CH₄
 - \circ H₂S, siloxanes/VOC, NH3, H₂O
 - 50 5,000 Nm³/h
- Selectivity
- Grid quality
- Hollow fiber and spiral-wound
- 4 8" module diameter

State-of-the-art materials

- Composites
- MOF
- FSC

Biogas upgrading specifications	Value	Unit
P _{CO2}	50-100	GPU
CO ₂ /CH ₄ selectivity	50	
CH ₄ slip	<0.5	%
Temperature	55	°C
Design pressure	14-20	bar

For H-gas grid 90% removal efficiency – depending the supplier

Thank you for your attention!

Any questions?

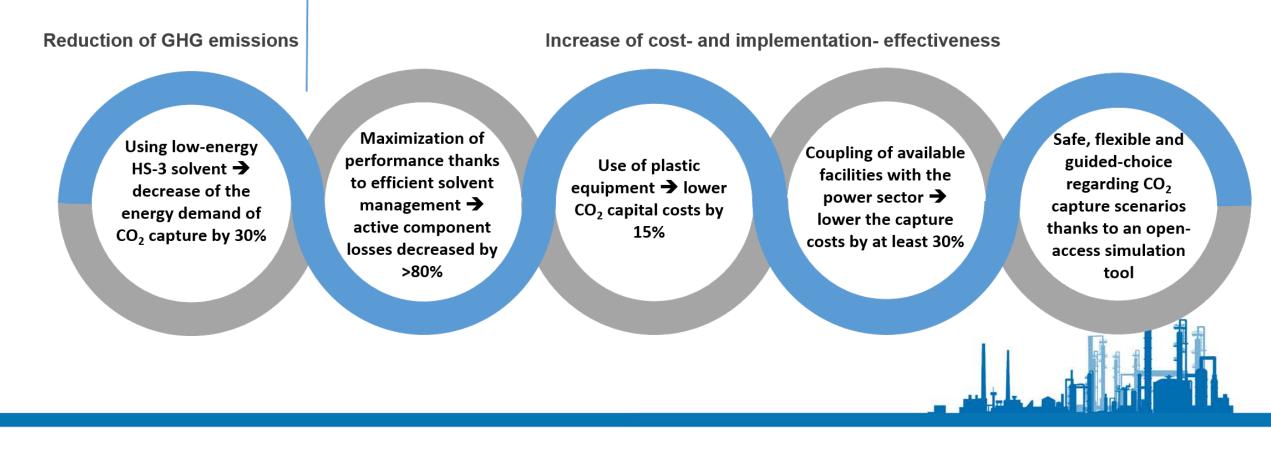
Follow us on social media

and find more about our products and activities

Technologies demonstration in REALISE project

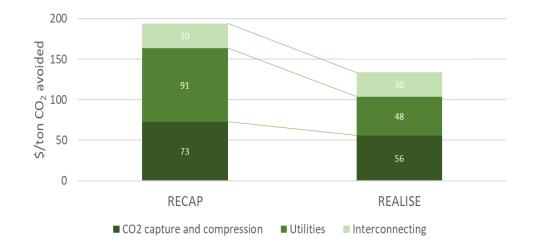
Inna Kim (SINTEF) and Juliana Monteiro (TNO)

@realise-ccus | www.realiseccus.eu | 1



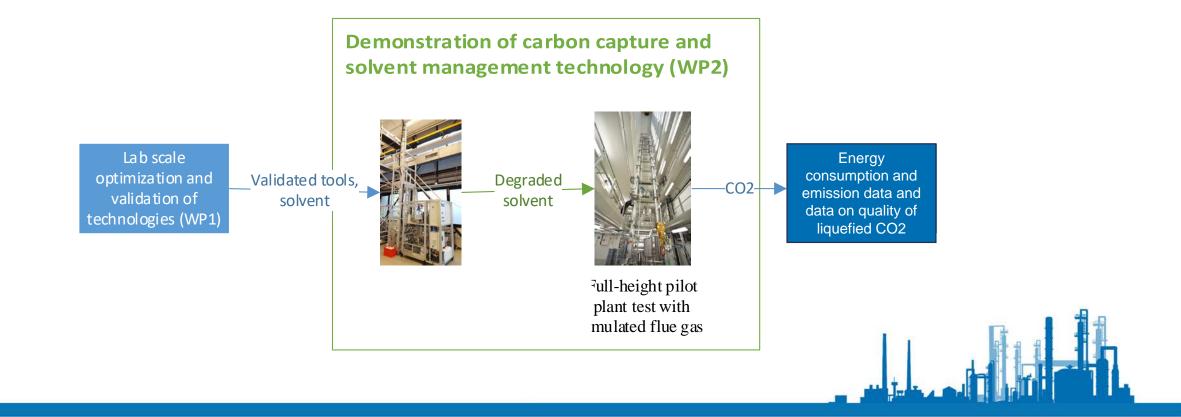
Demonstrating a refinery-adapted cluster-integrated strategy to enable full-chain CCUS implementation - REALISE

TRL 4-5 TRL 6-7 Process Demonstration Development of solvent-Full chain CCUS integration based technologies Bord Gáis Energy □ Project period: 05.2020 - 04.2023 NTNU TNO SINTEF IRVING **E**53 □ Project partners: NTNU Bord Gáis Energy **AVE CYBERNETICA** 🚯 PENTAIR **E23** 14 EU partners biobe TNO POLITECNICO **CCUS** deployment PENTAIR SINTEF equinor DI MILANO 2 partners in China Societal readiness SK innovation I partner in S. Korea Collaboration with MI countries ()證罰)法華大学 and Plan for **Exploitation** □ Project budget: 7 MEuro NTNU UCC UCC Societal impact, risks, barriers, business models Project management, administration and external communication **SINTEF** ·S **Advisory Board** petroineos Science STI



REALISE objectives

Projection of cost reduction for retrofitting CO₂ capture to refineries


"Utilities" include steam demand in the capture plant;

"Interconnecting" means integration of capture plant with both refinery and power plant

REALISE Innovation	Type of reduction	Reduction in capture costs	
		\$ / ton _{CO2 avoided}	
Use of plastic as packing material in the absorber	CAPEX	8	4
Reduced degradation by using DORA and IRIS	OPEX	8	4
Sector coupling and optimal integration and operation	CAPEX and OPEX	24	12
Novel free-to-operate solvent with low energy requirement	OPEX	20	10
TOTAL		60	30

REALISE methodology for scaling up and demonstration of carbon capture and solvent management technologies from TRL 4-5 to TRL 6-7

REALISE innovations

 \Box Novel low energy solvent for CO₂ capture from different flue gases

Free-to-operate CO₂ capture solvent developed by NTNU and SINTEF (FP7 HiPerCap)

□ Solvent management (to reduce solvent degradation and emissions):

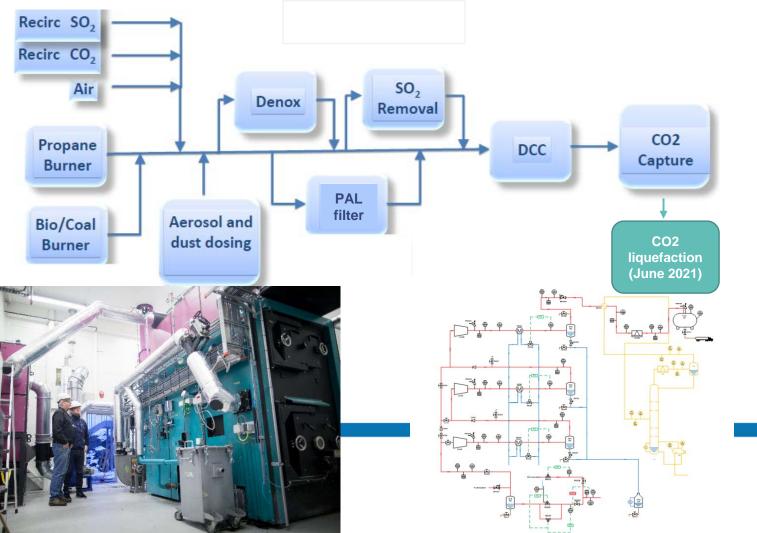
- Oxygen removal, DORA (patented by TNO)
- Iron removal, IRIS (patented by TNO)
- Plastics as material of construction, packing, etc.
- Process integration
 - Nonlinear model predictive control (NMPC developed by SINTEF and Cybernetica)
 - Open-access simulation tool for assessing CO₂ capture strategy at refineries
- Social studies
 - Education and Public Engagement program (Univ. Colledge Cork, see presentation by Dr. Niall Dupphy

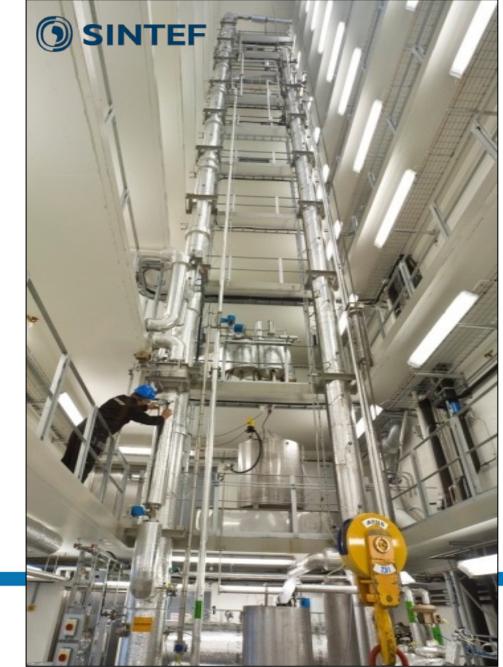
DORA prototype (TNO)

Multi-absorber concept in REALISE

REALISE sector-coupling concept for Irving Oil Whitegate refinery and power stations in Cork, Ireland

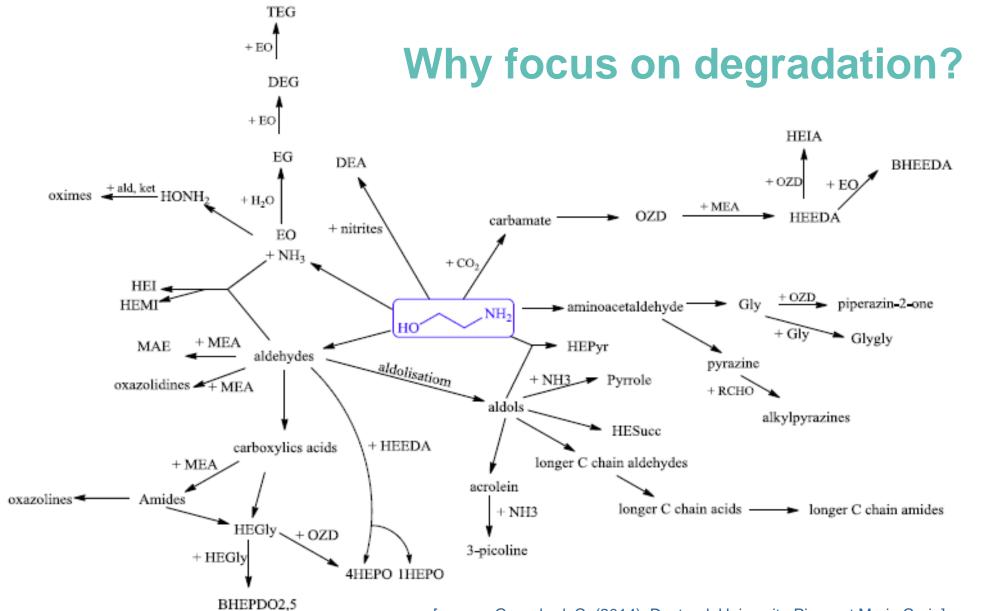
ATEX-proof mobile pilot fot testing onsite operating refinery




International workshop on CO2 capture and utilization, TU Eindhoven, 16-17 Feb 2020

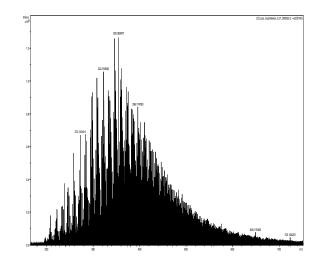
International workshop on CO2 capture and utilization, TU Eindhoven, 16-17 Feb 2020

Full-height CO₂ capture pilot plant



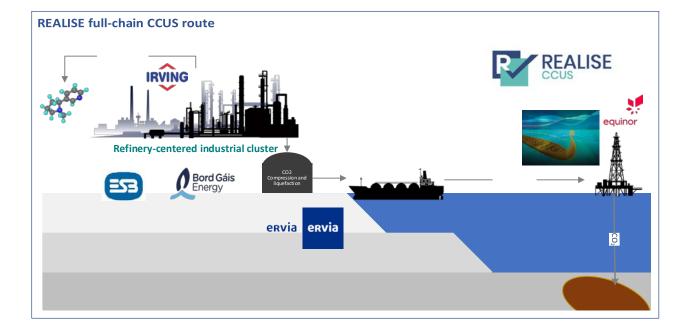
International workshop on CO2 capture and utilization, TU Eindhoven, 16-17 Feb 2020

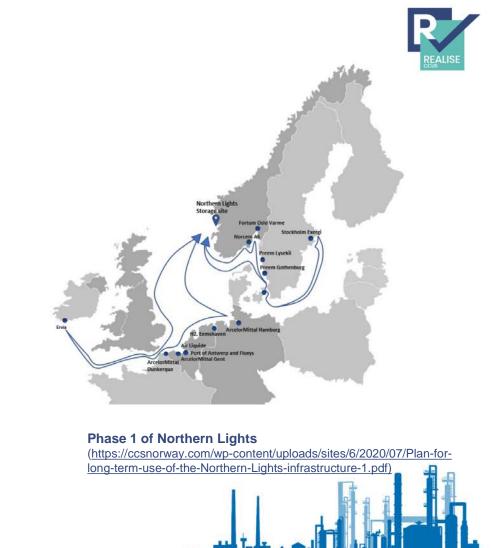
10



[source: Gouedard, C. (2014). Doctoral, Universite Pierre et Marie Curie]

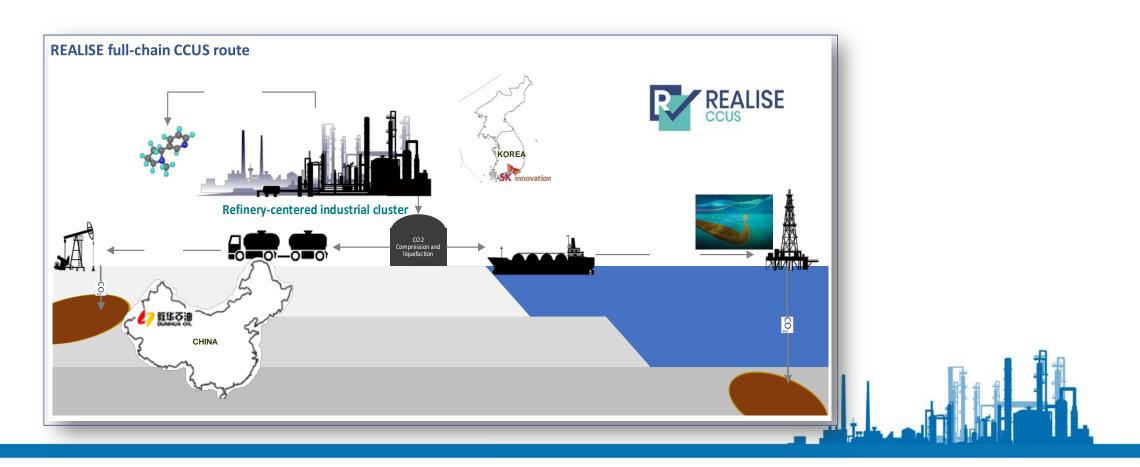
Advanced chemical analysis




Sampling of the cleaned gas from absorber (earlier project)

@realise-ccus | www.realiseccus.eu | 11

International workshop on CO2 capture and utilization, TU Eindhoven, 16-17 Feb 2020


REALISE business cases: Ireland

Business cases in REALISE: China and South Korea

Stakeholders' engagement in REALISE

Industry Club

External experts Advisory Board

Internation workshop on CO2 capture and utilization, TU Eindhoven, 16-17 Feb 2020

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884266

Thank you for listening

	Presenter
Presenter Name	Inna Kim
Presenter Email	inna.kim@sintef.no

	Project
@realise-ccus	
www.realiseccus.eu	
info@realiseccus.eu	

International Workshop on CO₂ Capture and Utilization

Pilot preparation for demonstration in the C4U project

17 February 2021


The contents of this presentation are the sole responsibility of *Swerim and partners* and do not necessarily reflect the opinion of the European Union.

Paul Cobden & Carlos Abanades

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418

C4U IS TYPICAL GOES ATYPICAL C4U IS GOOD ATYPICAL

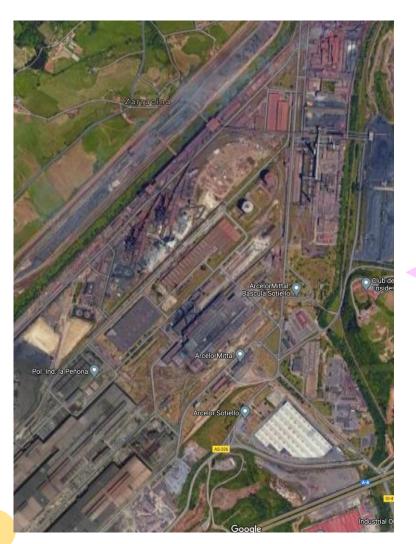
SEWGS Sorption-Enhanced Water Gas Shift

Post-combustion Capture

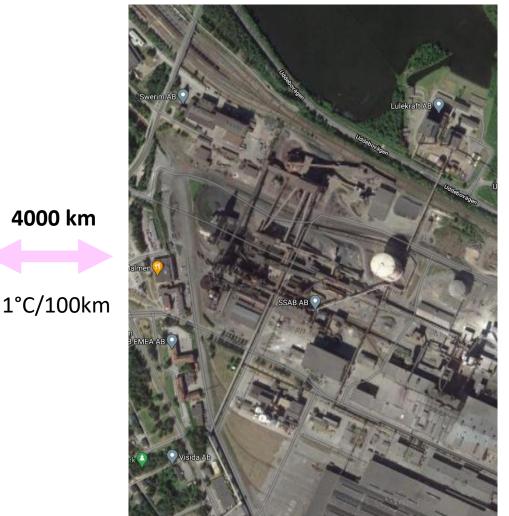
Pre-combustion Capture

HIGH TRL MEANS UTILISING INDUSTRIAL SITES/GASES FOR DEMONSTRATION

4000 km


Asturias

+17°C


CASOH Ca-Cu

1°C/mm

C⁴U

Pre-combustion testing

Post-combustion testing

Luleå

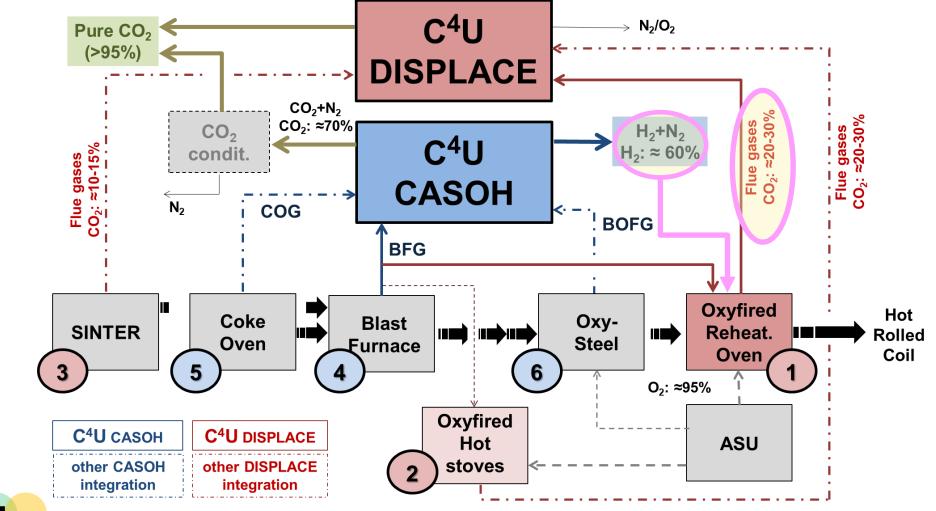
-24°C

DISPLACE Hydrotalcite

1°C/cm

STATUS OF PILOT PREPARATIONS

Similar Activities


- Both CASOH and DISPLACE will have 2000 hrs of demonstration at high TRL
- Most activities in 2020 and 2021 are engineering, procurement, construction
- DISPLACE has much of the equipment in place, and the linking of the unit is the main task
- CASOH requires a new pilot installation and building

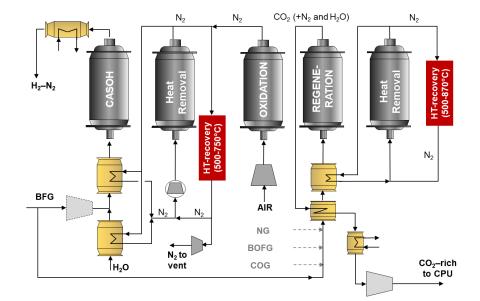
Status

- $\circ~$ Both CASOH and DISPLACE have achieved their respective deliverables on the basis of design
 - Special attention has been paid to the equipment delivery timeline
- Mass balances and operational philosophy of pilot
- All of the responsibilities of all of the involved partners in the different stages
 - Including delivery of the materials for testing, hydrotalcites, WGS catalysts, Ca-based sorbent and Cu-based materials
- Both CASOH and DISPLACE have delivered basic engineering and have started detailed engineering

HOW DO TECHNOLOGIES FIT WITHIN C4U?

C⁴U


DEMONSTRATION OF CO₂ CAPTURE PROCESSES IN STEEL MILLS

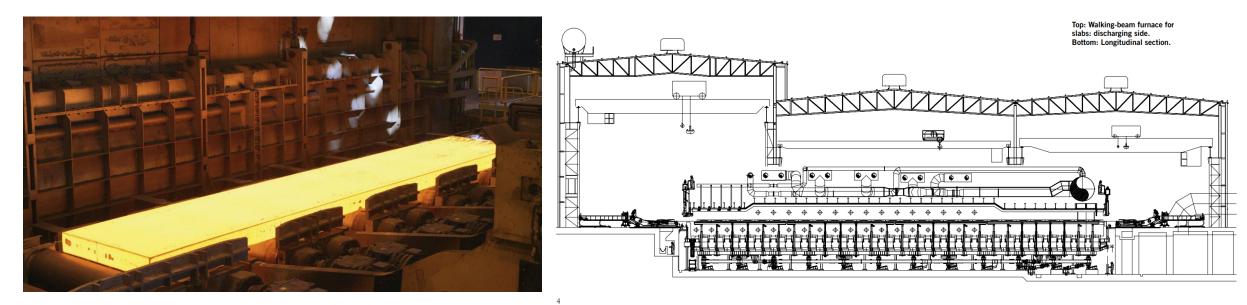

DISPLACE design:

Define the optimal sizing, number and configurations of the DISPLACE process, so to reduce the capture costs and to minimize the steam use while attaining the CO_2 purity target in the real scale plant.

CASOH design:

Provide overall M&H balance,Provide the large scale reactor size, and dynamic operation modelling, Calculate the performance of the single process, Provide the final design based on the experimental campaign at TRL7

DISPLACE TECHNOLOGY OBJECTIVES


2 x 1000 hr campaigns

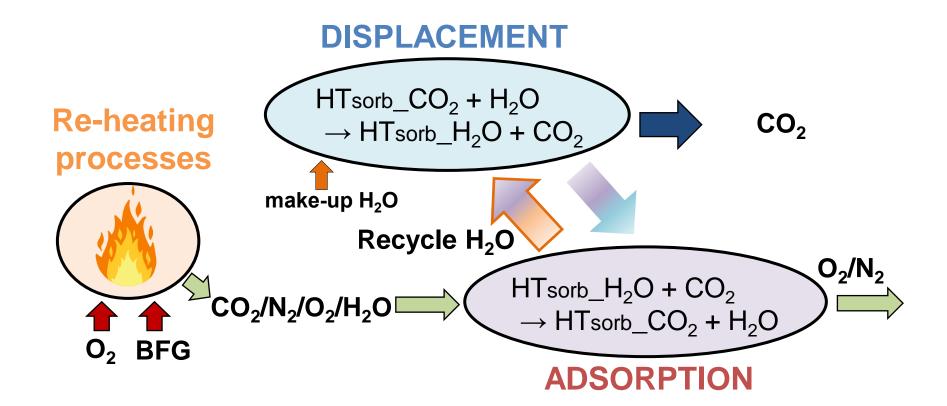
C⁴U

- \circ N₂-H₂ Campaign, separation of H₂ from BFG, and subsequent H₂ use in chamber furnace
- DISPLACE Campaign, oxy-combustion of BFG in walking beam furnace, and CO₂ capture of oxy-combusted BFG

WHAT ARE REHEATING OVENS?

2.4 MT/y WBF

DISPLACE: CO₂ CAPTURE EQUIPMENT



WGS (for N_2/H_2 campaign)

Single Column for N₂/H₂ Single Column DISPLACE Syngas Cooler

DISPLACE PROCESS

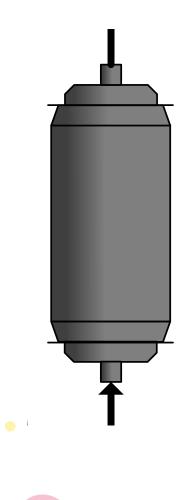
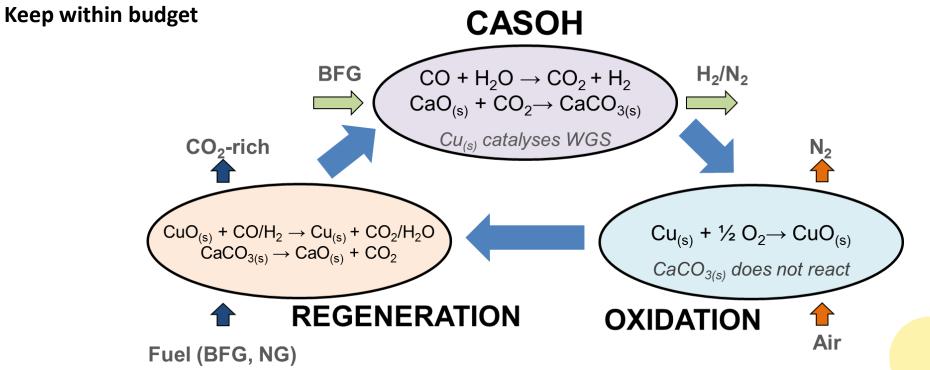
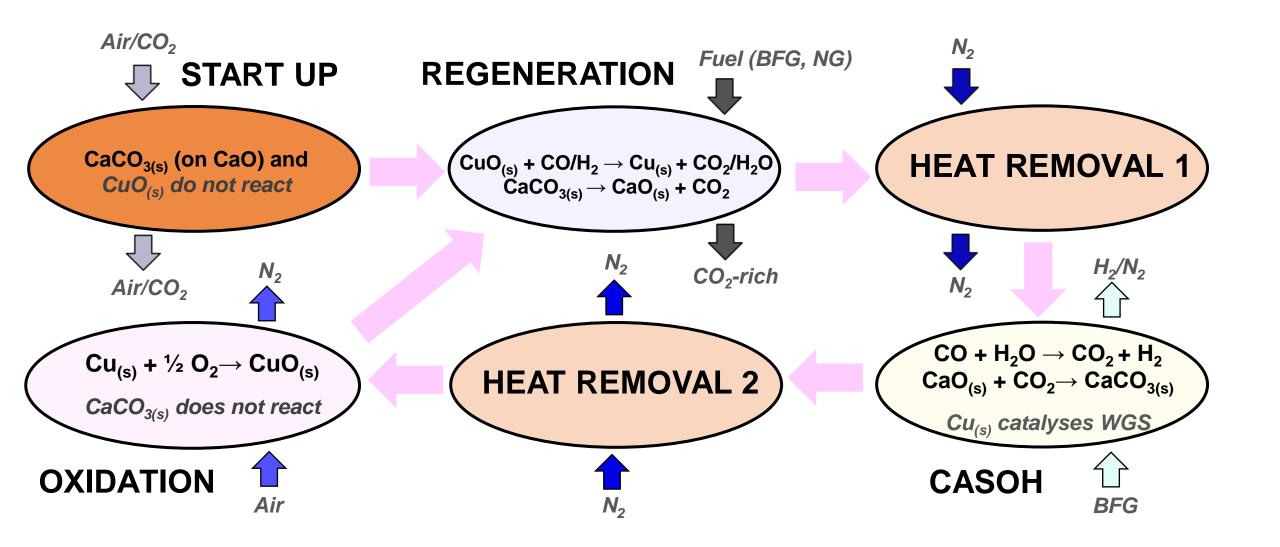

CASOH: Future location of the pilot at the AMA GasLab

FIGURE 21. Pilot plant location next to Gaslab ArcelorMittal area.


CASOH REACTIONS FOR BLAST FURNACE GAS

C⁴U

Main drivers for pilot design


- A single packed bed reactor is the core of the pilot
- Demonstration of reaction stages is a priority (i.e.: vs the heat removal stages)
- High TRL scale (defined as 0.3 MW_{LHVofH2} + 0.7 MW_{th} as HT heat from regeneration)
- Indicative dimensions: 5 m height, 0.5 m I.D.

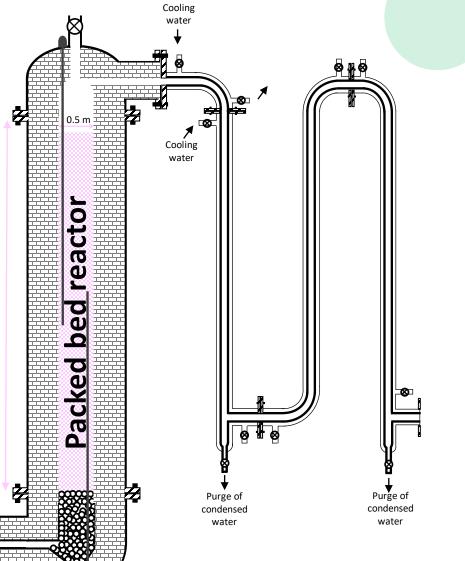
Process Flow Diagram of CASOH pilot

FULL OPERATION SEQUENCE IN THE PILOT

DESIGN STATUS OF MAIN PILOT COMPONENTS

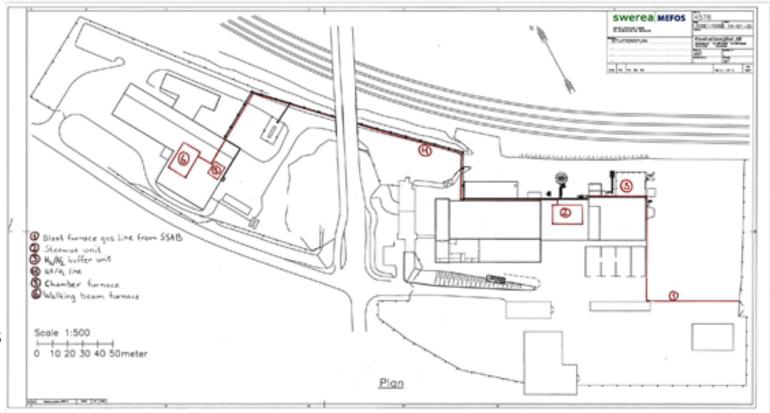
З 2

Bed characteristics


CaO active, %w	10
Cu active, %w	30
Particle size,mm	3

Samples of candidate materials from Carmeuse and Johnson Matthey received for lab. testing

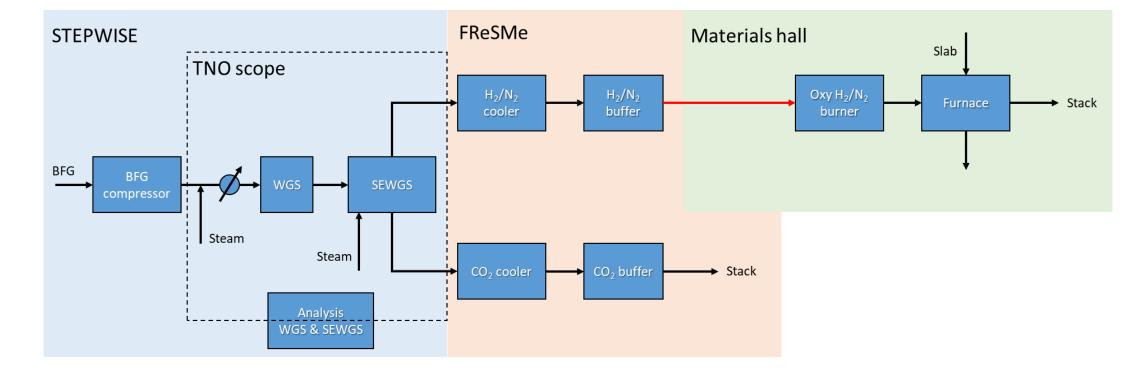
Reactor characteristics				
Height, m	5			
Diameter, m	0.5			
Cu/Ca molar	1.8			
Mass Ca-, kg	900			
Mass Cu-,kg	600			
Total bed mass, kg	1500			


CONFIDENTIAL DISPLACE CDP & BOD : COMMON DESIGN PRACTICE AND BASIS OF DESIGN

CDP

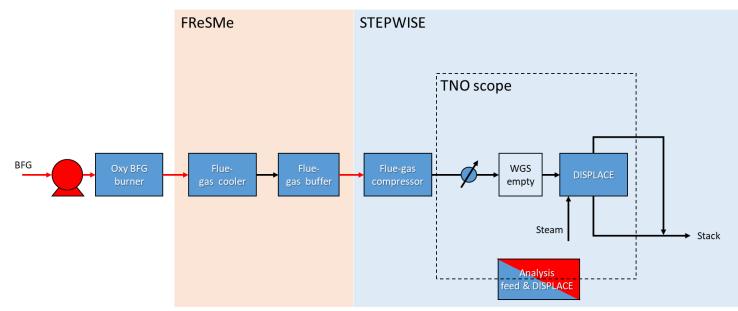
- Describes all partners activities and responsibilities for all partners involved in building and operating the pilot plant
- i.e. a more detailed description of scope compared to the DoA

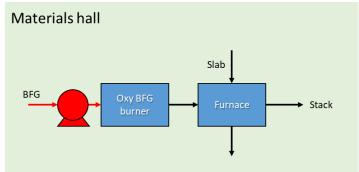
BOD


- Initial layout of equipment (see right)
- Mass and Energy flows and balances to drive basic engineering phase

CONFIDENTIAL

CPD & BOD N₂/H₂-CAMPAIGN


Campaign 1 : N_2/H_2 – SEWGS Campaign



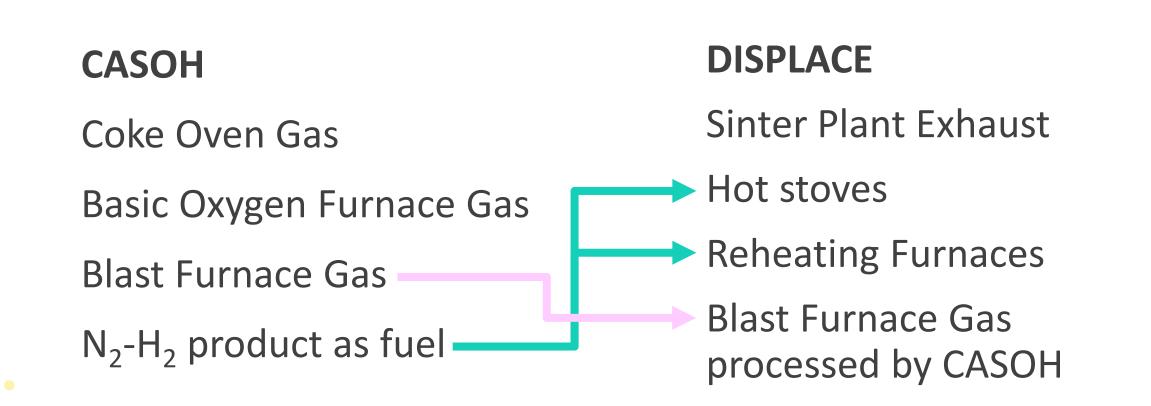
CONFIDENTIAL

CPD & BOD – DISPLACE CAMPAIGN

Campaign 2 : Oxy-BFG – DISPLACE Campaign

STATUS OF PILOT PREPARATIONS

Similar Activities


- Both CASOH and DISPLACE will have 2000 hrs of demonstration at high TRL
- Most activities in 2020 and 2021 are engineering, procurement, construction
- DISPLACE has much of the equipment in place, and the linking of the unit is the main task
- CASOH requires a new pilot installation and building

Status

C⁴U

- Both CASOH and DISPLACE have delivered their respective deliverables on the basis of design
 - Special attention has been paid to the equipment delivery timeline
- Mass balances and operational philosophy of pilot
- All of the responsibilities of all of the involved partners in the different stages
 - Including delivery of the materials for testing, hydrotalcites, WGS catalysts, Ca-based sorbent and Cu-based materials
- Both CASOH and DISPLACE have delivered basic engineering and have started detailed engineering

SYNERGIES BETWEEN CASOH AND DISPLACE

International Workshop on CO₂ Capture and Utilization

Pilot preparation for demonstration in the C4U project

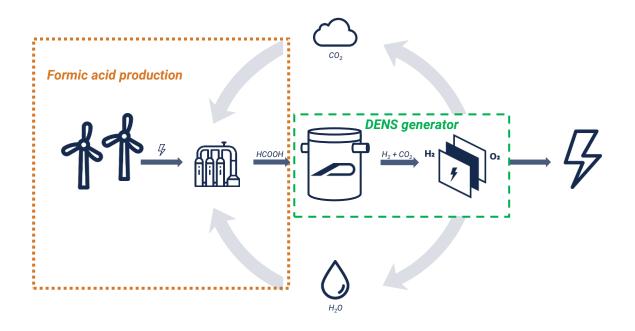
17 February 2021

The contents of this presentation are the sole responsibility of *Swerim and partners* and do not necessarily reflect the opinion of the European Union.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884418

ENERGY SOLUTI

DENS CCS


Formic acid as a liquid organic hydrogen carrier

About DENS

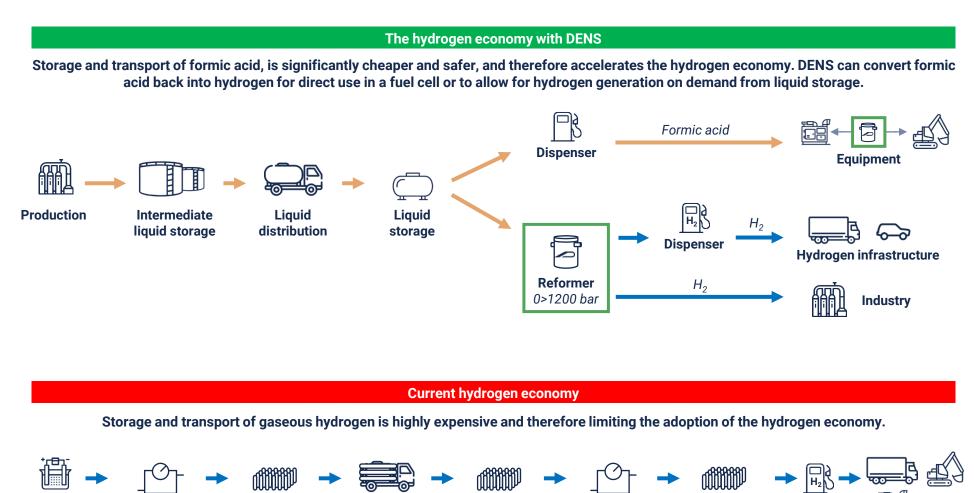
CO2 neutral energy carrier

Formic acid reconversion value proposition

Production

Compressor

1>250 bar


Intermediate

gas storage

Distribution

360kgH₂/trip

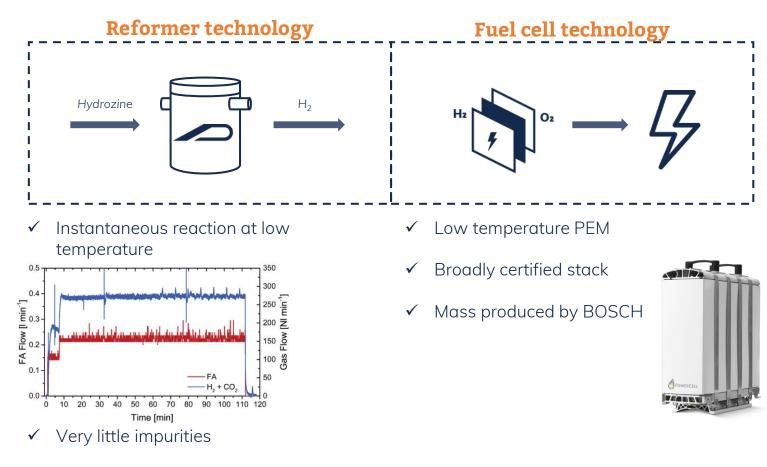
By using DENS' reformer technology, hydrogen's storage and transport issues can be easily overcome.

Storage

@ 250 bar

Compressor

250>900 bar

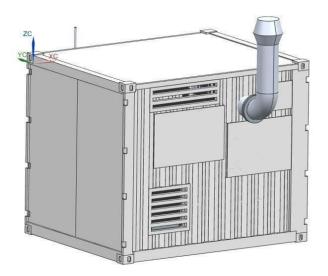

Storage

@ 900 bar

Dispenser

Applications

DENS generator technology



✓ Works up to 1200 bar

Results

First field tests are being preformed

- Gas quality stays good to keep using the fuel cell also outdoors
 - CO production well below given target of fuel cell
 - FA levels are also well below given target value of fuel cell
- Stable reformer production for over 1000 hours
- 10 kw of nominal power achieved for at least 200 hours
- System optimalisations are being performed
- New insights in lifetime optimilisation are being tested
- Start and shutdown behaviour is being investigated

Results

Electrical components

- System has converted all the power to the local grid, enough for 20 households during tests
- Safety components have been checked by Lloyds and CE marking was checked
- Subsystem was tested and was capable of handling 30 kw's of power Degradation
- Some degradation is witnessed not during runs but inbetween and not always
- Different Shut down and start procedures are being investigated together with partners, possible solutions are being tested (mainly due to emergency stops)

Planning

Tests are going to be performed at the end of the project at dk6 in Dunkirk

- Safety documents are being completed together with Engie
- Prelimary tests are being performed to solve start stop degradation
- Reformer components are being evaluated to make sure all wear and tear is being recorded and noted

Formic acid versus hydrogen

Hydrogens adoption barriers can be overcome via the liquid organic hydrogen carrier (LOHC) Formic acid in combination with DENS' reformer.

VS.

Adoption barriers

- 1. Pressurized gas storage
 - × Compressed at 200-700 bar.
 - × Liquified at -253 °C.
 - × Elevated safety risks.
 - × Expensive compression cost.
- 2. Gaseous distribution
 - × Expensive tube trailers.
 - × Only 360kg H_2 per trip.
- 3. Compression required
 - × Mechanical compression is required for refueling.
 - × Expensive compression cost.

P vs. **P** 2. L

Barrier breakers

- 1. Liquid storage
 - Ambient pressure.
 - ✓ Limited to no safety risks.
 - ✓ Affordable liquid pumping.
 - Liquid distribution
 - ✓ Affordable liquid trailers.
 - ✓ 4x more per trip (1431kg H_2).

) vs.

- 3. Hydrogen production on demand
 - ✓ Chemical compression up to 1200 bar.
 - \checkmark No additional energy required.
 - ✓ 100% renewable.

□ H₂ \

Affordable hydrogen

Max Aerts | CEO

+31620276608 | max.aerts@dens.one

Design and development of a membrane based post-combustion CO₂ capture system

Workshop on CCUS 16-17 / 02 / 2021 www.iwccu.org

Leonardo Roses

Contact: leonardo.roses@hygear.com

www.hygear.com

The present publication reflects only the author's views. The Commission is not responsible for any use that may be made of the information contained therein.

17/02/2021 Page 1

- Introduction to HyGear
- Introduction on CO₂ emissions
- \geq Processes for CO₂ Capture
- MEMBER objectives
- > Design requirements for demonstration at industrial site
- Design and development of post-combustion CO₂ capture system
- Conclusions and final remarks

FACTS AND FIGURES

Established in 2002

With the mission to develop cost-effective gas supply

14 patents securing a sustainable competitive edge

Active in **20 countries**

Industries that we are active in

82

Highly motivated employees with an

entrepreneurial and innovative spirit

Flat/float glass manufacturing Metal sintering Food Electronics Semiconductor Fuelling station for vehicles

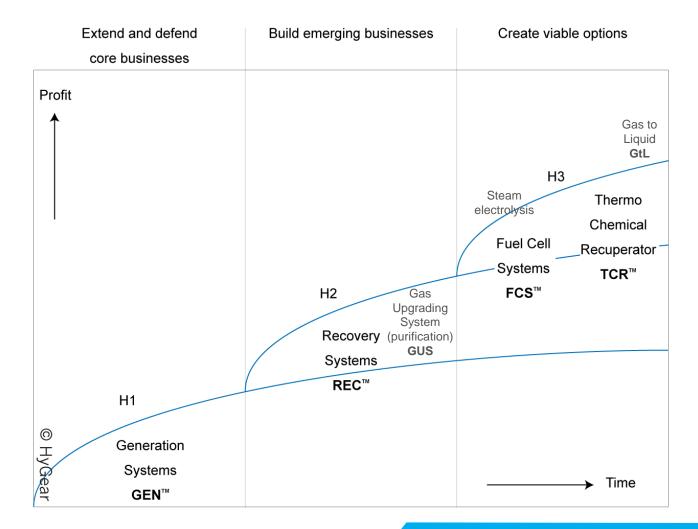
> €23m

Gross revenue

66
Installations operational worldwide

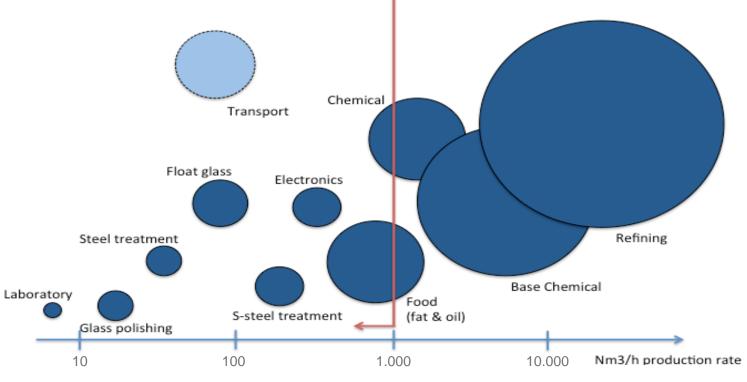
> 85,000 kg

CO₂ reduction per customer per year with breakthrough technologies

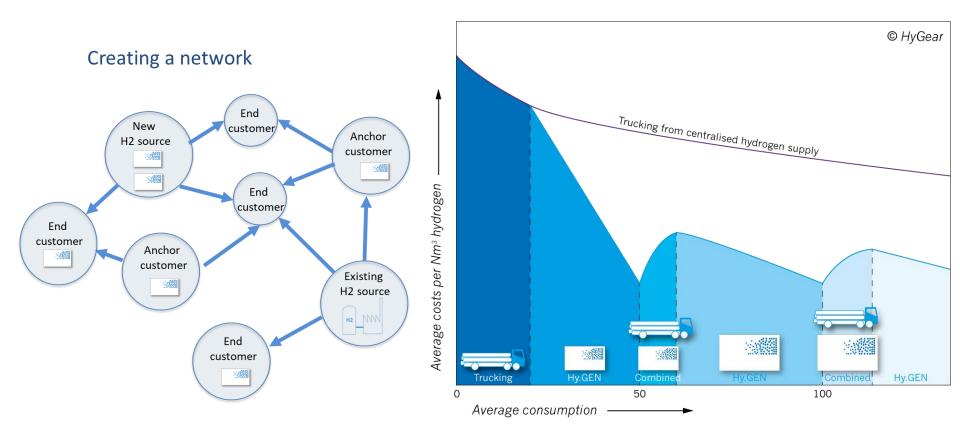


PRODUCTS & SERVICES

DELIVERING GASES THROUGH ON-SITE TECHNOLOGY



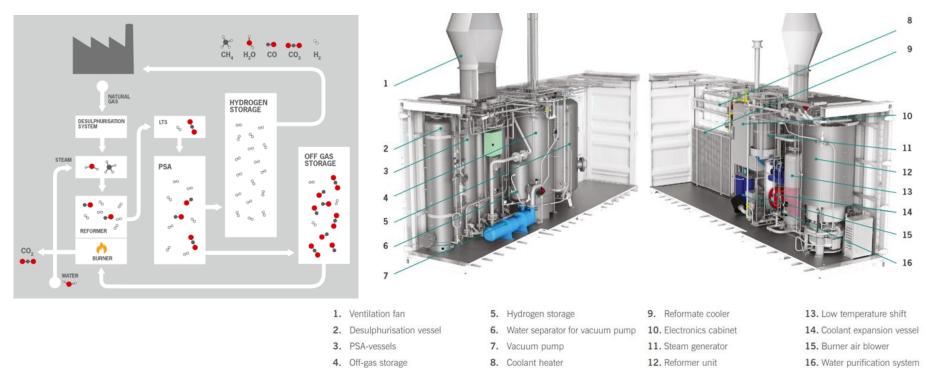
DEVELOPMENT STRATEGY


CONFIDENTIAL & PROPRIETARY

HYDROGEN MARKET

Bron: Air Liquide

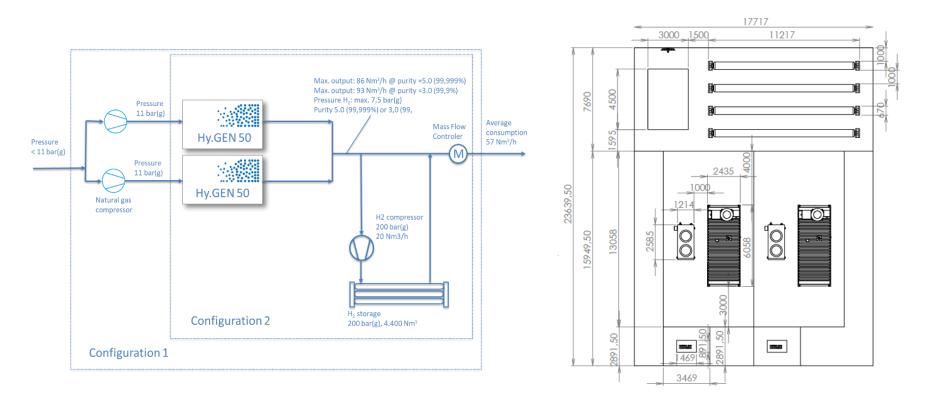
THE MERITS OF ON-SITE SUPPLY

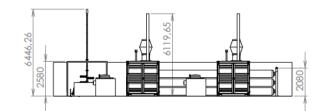

ON-SITE HYDROGEN GENERATION TECHNOLOGY EXPLAINED

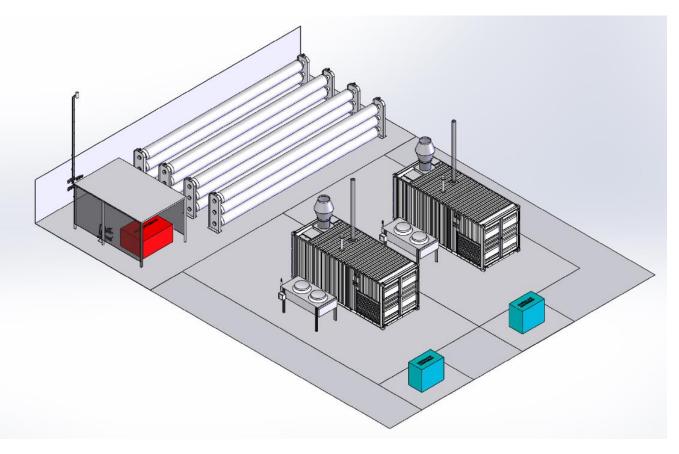
HYDROGEN TECHNOLOGY EXPLAINED

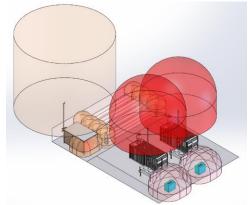
The unique strength of Hy.GEN® SMR-technology: •Hy.GEN® Steam Reforming needs 0.5 Nm³ Natural gas per Nm³ H₂

When compared to other supply methods:


- •Electrolysis; that needs 6.5 kWh Electricity per Nm³ H₂
- •Trucking; that needs 40 tons of truck to move 300 kg of gas




MODEL	Hy.GEN® 50	Hy.GEN® 100	Hy.GEN® 150	
OUTPUT				
Nominal H ₂ flow	Max. 47 Nm ³ /h	Max. 94 Nm ³ /h	Max. 141 Nm ³ /h	
Hydrogen Purity Range	99.5 – 99.9999 %	99.5 - 99.9999 %	99.5 – 99.9999 %	
Pressure Range	1.5 – 7.5 bar(g)	1.5 – 7.5 bar(g)	1.5 – 7.5 bar(g)	
TYPICAL CONSUMPTION DATA				
Natural Gas	Max. 23 Nm ³ /h	Max. 46 Nm ³ /h	Max. 69 Nm ³ /h	
Electricity	12.5 kWe	22.5 kWe	25 kWe	
Water	100 l/h	200 l/h	300 l/h	
Compressed air	Max. 3 Nm ³ /h	Max. 6 Nm ³ /h	Max. 9 Nm ³ /h	
DIMENSIONS				
Size	20 ft.	40 ft.	40 ft.	
Weight	6,500 kg	10,000 kg	12,000 kg	
OPERATING CONDITIONS				
Start up time (warm)	Max. 30 min	Max. 30 min	Max. 30 min	
Start up time (cold)	Max. 3 hours	Max. 3 hours	Max. 3 hours	
Modulation (H ₂ product flow)	0 – 100 %	0-100 %	0 – 100 %	
Modulation Reformer (output)	10 – 100 %	10 - 100 %	10 - 100 %	
Ambient Temperature Range	-20 °C to +40 °C	-20 °C to +40 °C	-20 °C to +40 °C	


TYPICAL CONFIGURATION GLASS PLANT

TYPICAL CONFIGURATION GLASS PLANT

SAINT GOBAIN L'ARBOC, SPAIN

DUZCE CAM, TURKEY

PHILIPS LUMILEDS TURNHOUT, BELGIUM

WALMART TEXAS, USA

HYGEAR HYDROGEN FILLING STATION IN THE NETHERLANDS

SUMMARY OF KEY BENEFITS

- Industrial Gas supplier in small bulk
- Ability to design, install and operate the supply
- Highest security of supply by on-site generation with trucked back up
- Against the lowest costs due to advanced technologies



FLEXIBLE CONTRACTING

	BUY	GAS-AS-A-SERVICE (GAAS)
Equipment investment	Customer	HyGear
Infrastructural preparations	Customer	Customer
Installation & commissioning	HyGear	HyGear
Equipment operation	Customer	Customer
Service including system monitoring assistance	Contract option available	HyGear
Maintenance	Contract option available	HyGear

YOUR BENEFITS:

R&D PROJECTS

R&D PROJECTS

MEMBRANE PROJECTS

Hy2SEPS2

• H₂ mem+PSA hybrid system

DEMCAMER

• $O_2 \text{ mem ATR}$, O2 mem OCM, H₂ mem WGS, H₂O mem FTS

REFORCELL

H2 mem for NG ATR

FERRET

H₂ mem for flexible feedstock gas ATR

M4CO2

• H₂ mem (pre-comb); CO₂ mem (post-comb)

FLUIDCELL

• H₂ mem for EtOH ATR

MEMERE

• 0₂ mem

HyGrid

H₂ mem separation

MEMBER

• H₂ mem (pre-comb); CO₂ mem (post-comb)

										1 - C
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
										ļ II
										į –
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
										<u> </u>
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	202
										부모는
										<u> </u>
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	202
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	202
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	202
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	202
										ji L
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	202
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	202
										i –

R&D PROJECTS

EXAMPLES

Membrane reformer system

Gas purification of waste water treatment

PBI fuel cell system

PSA systems

Fermentation and hydrogen stripping

Advanced MEMBranes and membrane assisted procEsses for pre- and post- combustion CO₂ captuRe

MEMBER

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760944

(Confidential. *Disclosure or reproduction without prior permission of MEMBER is prohibited).*

17/02/2021 Page 24

Introduction on CO₂ emissions

- CO₂ is the undesired by-product of hydrocarbon conversion processes and the product of combustion in power production, building heating, transportation, etc.
- CO₂ emissions from stationary system come mostly from power production (~80 %), while cement, refinery, steel and petrochemical contribute for about 20 % ^[1].
- > The first objective of CO_2 capture is the decrease of anthropogenic CO_2 emissions. In parallel there is an effort to develop potential CO_2 applications that could, at least in part, economically support the deployment of CCS technologies

PROCESS	CO ₂ emissions 10 ⁶ metric ton / year	% on the Total
Power production	10,539	^{78.8} ~80%
Cement production	932	7.0
Refineries	798	6.0
Iron and steel industry	646	4.8
Petrochemical industry	379	2.8 ~20%
Oil and gas processing	50	0.4
Other sources	33	0.2

[I] IPCC reports 2018

17/02/2021 Page 25

CO₂ demand and potential

- > The potential for CO_2 utilisation is substantial
- \succ Existing uses and demand of CO₂:
- > Purification requirements vary widely

Existing uses	Brief description	Future potential non-captive CO ₂ demand (MTPA)	Minimum purity
Enhanced oil recovery (EOR)	CO_2 acts as a solvent that reduces the viscosity of oil fields, enabling it to flow to the production well.	30 < demand < 300	90 %
Food	CO ₂ used in different applications, including packaging (modified or controlled atmosphere packaging), cooling while grinding powders, food spoilage prevention by acting as an inert atmosphere and dry ice as refrigerant to prolong food storage	~15	99.9 %
Beverages	Carbonation of beverages with high-purity CO ₂ .	~14	99.9 %
Refrigerants	Used as working fluid in refrigeration plants, especially for industrial air conditioning and refrigeration systems.	<1	99.9 %
Industrial	Used for steel manufacturing, metal working, welding and other applications.	<1	99.5 %
Storage	CO ₂ sequestration		95 %

Processes for CO₂ Capture

> In combustion processes CO_2 can be captured via three different routes:

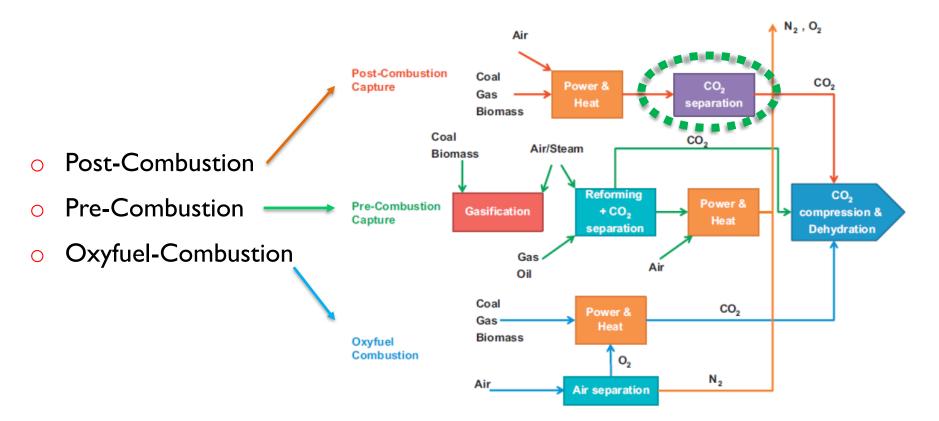


Figure 1. Schematic conceptual representation of CO₂ capture technologies [12].

Benchmark process for post-combustion CO₂ Capture

- At large scale and low CO₂ content in the feed, chemical absorption is the most widespread technology. This is the benchmark technology for the MEMBER project
- It is applied in many industrial units such as ammonia production and gas processing and in some existing CCS applications (mainly aimed at EOR)
- Physical absorption and adsorption are more suitable at smaller scales and/or when CO₂ partial pressure in the feed is sufficiently elevated. The absorption/regeneration process (both chemical and physical) is by far the most widespread technology for CO₂ separation from gaseous streams.
- For a detailed description of benchmark technologies and industrial requirements, visit public deliverable D2.2 available at the MEMBER website.

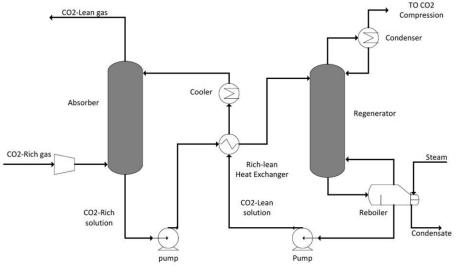
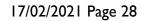
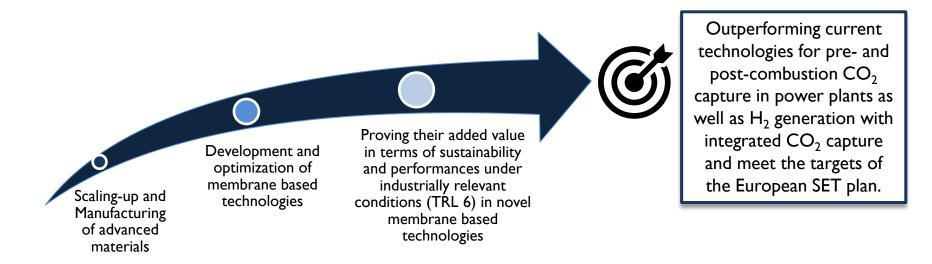



Figure 2. Typical flowsheet of a basic chemical absorption process for CO₂ capture.

Membrane based CO₂ separation for post-combustion capture

- Perm-selective membranes are thin barriers that allow selective permeation of certain gases
- Driving force for permeation is the CO₂ partial pressure, hence flue gas compression may be required, depending on the gas conditions
- In MEMBER we develop hollow fiber (HF) membrane modules permeable to CO₂, offering important advantages, such as high packing density (>10,000 m²/m³), resistance to high pressure difference, and contained fabrication costs
- For post-combustion CO₂ capture (CO₂/N₂ separation) thin film Pebax polymer based composite hollow fibers are being prepared by dip coating of porous hollow fiber supports. Metal Organic Framework (MOF) will be in the outside coating selective layer


17/02/2021 Page 29

MEMBER Objectives

The main objective of the MEMBER project is the scale-up and manufacturing of advanced materials and technologies, aimed to reduce the cost of CO₂ capture.

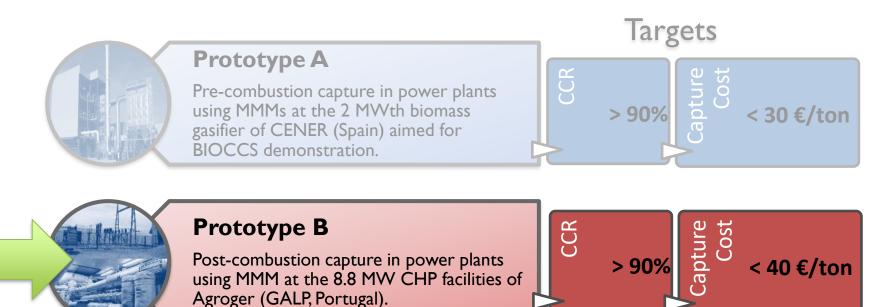
> Each solution is going to be demonstrated through the operation and test of a prototype

Scale-up issues are addressed during the project and a Business Plan is prepared for the industrial application of each technology.

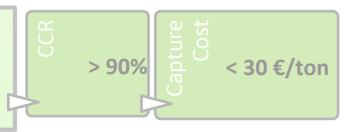
MEMBER Objectives

- Reference and Target Performance and Cost for the MEMBER processes
- > The target CO_2 purity for MEMBER process is 95 %.

	Reference Technology	Reference CCR [%]	Reference Cost of CO ₂ [€/ton]	MEMBER Targets for CCR [%]	MEMBER Targets for Cost of CO ₂ [€/ton]
Pre-comb. Power (IGCC)	Absorption by SELEXOL	90.9	33.0	90	< 30
Post-comb. Power (Coal)	MEA absorption	88.1	54.3	90	< 40
Hydrogen via SMR (NG) +CO ₂ pre- comb. capture	MDEA absorption	56	47.1	90	< 30
Hydrogen via SMR (NG) +CO ₂ post- comb.capture	MDEA absorption	90	69.8	90	< 30


17/02/2021 Page 31

MEMBER Objectives



Prototype C

Pure hydrogen production with integrated CO2 capture using MA-SER at the IFE-HyNor (Norway) under the supervision of ZEG POVVER.

Demo Site: AGROGER CHP plant - property of Galp Energia - Portugal gal

- Galp Energia is a vertically integrated multi-energy operator operating in the oil and natural gas business and as a producer and seller of electricity for industrial and home consumption.
- AGROGER CHP plant consists of 2 sets of natural gas fuelled power-generators providing up to 8.8 MWe of power, plus heat to users in the area

> Main materials and process targets:

Target MMM	Value	Unit
CO ₂ permeance	300	GPU
CO ₂ /N ₂ selectivity	70	-
Membrane area	10	m ²
Design pressure	7	bar(g)
Membrane cost	<100	€/m ²
Target process	Value	Unit
CO ₂ recovery	90	%
CO ₂ purity	95	%

System requirements

Other design conditions:

- Feed flow 10 Nm³/h.
- Atmospheric supply pressure

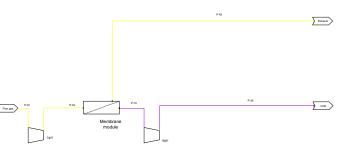
Composition:

Species	% molar
CO ₂	5.8 %
H ₂ O	3.7 %
0,	10.0 %
N_2	80.5 %
Total	100 %

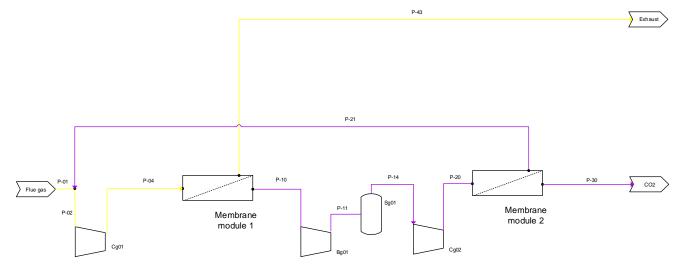
Selectivities:

CO ₂ /H ₂ O	1
CO_{2}^{-}/O_{2}^{-}	28
CO_2/N_2	70

I or 2 stage layout



System design and development


Modelling different layouts

- Single stage layout;
 - CO₂ purity target not reached, neither without nor with recirculation

Dual stage layout

- > CO_2 separation membrane #1 = 94 %
- > CO_2 separation membrane #2 = 57 %
- Vacuum pump on permeate membrane #1

System design and development

Modelling sensitivity to membrane permeance

Permeance (GPU)	CO ₂ rec.	CO ₂ purity
300 (nominal target)	>90 %	>90 %
200	86 %	>90 %
100	67 %	>90 %

* Cases with constant pressure at 4 bar

- > CO₂ recovery is reduced if permeance decreases
- Purity is not compromised
- Countermeasure would be to increase operating pressure to maintain CO₂ recovery

Permeance (GPU)	CO ₂ rec.	CO ₂ purity	Pressure membranes stages # 1/2 (bar)
300 (nominal target)	>90 %	>95 %	7/6
200	>90 %	>95 %	9/9
100	>90 %	>95 %	14 / 14

System design and development

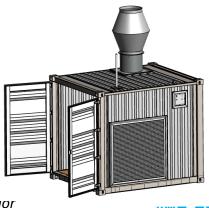
Modelling sensitivity to membrane selectivity

Selectivity S [CO₂/N₂]

S [CO ₂ /N ₂]	CO ₂ recov.	CO ₂ purity
70	90.6 %	93.5 %
40	90.6 %	90.0 %

* S to N_2 and H_2O left unchanged. Cases at 4 bar.

> Purity is affected by a decay in selectivity



Conclusions and final remarks

- The prototype for post-combustion CO₂ capture will be demonstrated in an industrially relevant environment, allowing validation of the performance and stability of the technological solutions and materials.
- Prototype design with two stages meets targets of CO₂ purity >95 %, and recovery >90 %
- Membrane module stage #2 is smaller than membrane module stage #1
- Maximum operating pressure 7 bar(g)
- > Selectivity is very important to reach the purity targets
- > In case of lower permeance, we need to increase the operating pressure
- > System design is finalised, and assembly is ongoing.
- System will be installed in 10 ft container

17/02/2021 Page 39

Design and development of a membrane based post-combustion CO₂ capture system

Workshop on CCUS 16-17 / 02 / 2021

Thank you for your attention

https://member-co2.com/

Contact: leonardo.roses@hygear.com

www.hygear.com

17/02/2021 Page 40

Name A. Benedito A. Mattos A. Mitchell Abdul Qader Adam Deacon Adelbert Goede Adriana Díaz Agustin Blanco Ahmad Taghizadeh Aitor Cruellas Labella Alberto Tena Alejandro Morales Alessandro Poluzzi Alexander Imbault Alexandros Argyris Alvaro Ramirez Santos Amin Delparish Anastasia Sliousaregko Andrea Fasolini Andrea Randon Andreas Kaiser Andreas Meiswinkel Andrej Pohar Andrew Shamu Angels Orduna Anne Bert Fokkema Anton Manakhov Antonio de Paula Oliveir Anže Prašnikar Apoorva Maheshwari rash Rahimalimamagha Arian Nijmeijer Arnstein Norheim Ayami Saimura Ayşegül Bayat Barbara Silvegni Berend terMeulen Berenger Wegman Betül Şeker Blanca Zaragoza Brandon Jose Leal Perez C. Abanades Calin-Cristian Cormos Camel Makhloufi Camilla Brencio Carina Faber Carlos Echaide Celal Guvenc Ogulgonei Célia Sapart Chaitanya Bhatraju Chathuranga Wickramasinghe Dalthota Gedara

Email abenedito@aimplas.es antonia.mattos@element-energy.co.uk amelia.mitchell@element-energy.co.uk slqaus@gmail.com adam.deacon@matthey.com a.p.h.goede@differ.nl diaz@ecodesign-company.com agustin.blanco@tecnalia.com damanabiahmad911@gmail.com a.cruellas.labella@tue.nl a.tena@utwente.nl amorales@uliege.be alessandro.poluzzi@polimi.it alexander.imbault@mail.utoronto.ca alexandros.argyris@manchester.ac.uk alvaro.ramirezsantos@engie.com a.delparish@tue.nl asliousaregko@dmt-et.nl andrea.fasolini2@unibo.it a.randon@tue.nl akai@dtu.dk andreas.meiswinkel@linde.com andrej.pohar@ki.si andsha@protonmail.ch aor@spire2030.eu fokkema@kisuma.com manakhovam@sibur.ru antonio.oliveira@ife.no anze.prasnikar@ki.si apoorvam113@gmail.com a.rahimalimamaghani@tue.nl arian.nijmeijer@shell.com arnstein.norheim@zegpower.com ayami_saimura@mri.co.jp aysegul.bayat@tupras.com.tr barbara.silvegni@petroltecnica.it berend@co2xair.nl berenger.wegman@external.engie.com betul.seker@tupras.com.tr bzaragozarp@gmail.com b.j.leal.perez@tue.nl abanades@incar.csic.es cormos@chem.ubbcluj.ro camel.makhloufi@engie.com c.brencio@tue.nl carina.faber@engie.com cechaide@unizar.es

guvenc.ogulgonen@socar.com.tr celia.sapart@co2value.eu chaitanya.bhatraju96@gmail.com

c.w.s.dalthota.gedara@tue.nl

Organization Country Spain United Kingdom United Kingdom Jnited Kingdom Johnson Matthey Differ The Nederlands Austria Spain Iran The Nederlands The Nederlands Belgium Polimi Italy University of Torontc Canada niversity of ManchesUnited Kingdom France Engie TU Eindhoven The Nederlands DMT The Nederlands Uni Bolonia Italy TU Eindhoven The Nederlands DTU Denmark Linde Germany onal Institute of Chen Slovenia Protonmail Switzerland Spire2030 Belgium The Nederlands Sibur Russia Norway Slovenia ven university of teclThe Nederlands Shell The Nederlands Zegpower Norway MRI Japan Turkey Italy O2CirculAir BV (i.oΓhe Nederlands ENGIE France Turkey Spain The Nederlands Spain UBB Cluj Romania Engie France The Nederlands **ENGIE Laborelec** France Jniversity of Zaragoz

Spain Turkey Belgium

Socar

The Nederlands

Christelle Denonville christelle.denonville@sintef.no Sintef Norway Christophe Voisin christophe.voisin@mariontechnologies.com Marion Technologies France christopher.deleeuwe@manchester.ac.uk Christopher de Leeuwe niversity of ManchestJnited Kingdom Cyrille Delneuville cdelneuville@prevor.com France dan.mmo.94@gmail.com Daniel Omran Daniele Candelaresi daniele.candelaresi@unicas.it f Cassino and Souther Italy vid Alfredo Pacheco Tar alfredo.pacheco@tecnalia.com Tecnalia Spain Declan Lynch delynch@bordgais.ie Bordgais Ireland VITO Deepak Pant deepak.pant@vito.be Belgium Delphine Maury delphine.maury@mariontechnologies.com Marion Technologies Finland Deniz Etit d.etit@student.tue.nl TU Eindhoven The Nederlands Didik Supriyadi didiksupriyadi21@gmail.com The Nederlands Dokyum Kim d.kim2@student.tue.nl Renew CO2 CNRS Eglé Ferreri egle.ferreri@univ-lorraine.fr France Eleonora Vannuzzi eleonora.vannuzzi@gmail.com .ife Cycle Engineerin Italy Ellart de Wit HyGear The Nederlands ellart.de.wit@hygear.com Emma Palo e.palo@kt-met.it KΤ Italv Eric de Coninck eric.deconinck@arcelormittal.com Arcelor Mittal Belgium Eric van Dijk eric.vandijk@tno.nl TNO The Nederlands Ernst Breuer ernstbreuer@btd.be Belgium Farnaz Sotoodeh The Nederlands farnaz.sotoodeh@feyecon.com Feyecon Fausto Gallucci f.gallucci@tue.nl TU Eindhoven The Nederlands Fernanda Neira m.f.neira.dangelo@tue.nl The Nederlands D'Angelo franciscoborja.ab.lo@gmail.com Francisco Abad López Spain cisco de Sales Vidal Váz francisco.vidal-vazquez@kit.edu uhe Institut für Techr Germany G .Bonura giuseppe.bonura@itae.cnr.it Italy G. Garcia g.garcia-garcia@sheffield.ac.uk United Kingdom Gazelle Bagherieh gazelle.bagherieh@gmail.com Iran Gerard Van Rooij g.vanrooij@maastrichtuniversity.nl Maastricht University The Nederlands Giampaolo Manzolini giampaolo.manzolini@polimi.it Politecnico di Milanc Italy Gilberto Colina gcolina@ucsm.edu.pe Andrade Peru Giulia De Felice g.de.felice@tue.nl TU Eindhoven The Nederlands Giulio Guandalini giulio.guandalini@polimi.it Polimi Italy Giuseppe Spazzafumo uclam@spazzafumo.name f Cassino and Souther Italy Gopal Panjwani gopal.panjwani@gmail.com Gunnar Sanner gunsa@equinor.com Norway Guy De Weireld guy.deweireld@umons.ac.be Belgium Hamid Reza Godini h.r.godini@tue.nl The Nederlands TU Eindhoven Haneef Shijaz h.shijaz@tudelft.nl The Nederlands Haroun Mahgerefteh h.mahgerefteh@ucl.ac.uk iversity College Londnited Kingdom Helene Lepaumier helene.lepaumier@engie.com France Henk Akse henk.akse@traxxys.com The Nederlands Ignacio Herraez i.herraez@nanogap.es Nanogap Spain Imma Gaggiano imma.gaggiano@gmail.com Ingrid K Wold Aalde ikwold@equinor.com Norway Inna Kim inna.kim@sintef.no SINTEF Norway J Serra jmserra@itq.upv.es Spain Javier Medina jmedina@qieurope.com QI Europe The Nederlands Jeffrey Felix CO2CirculAir BV ioFhe Nederlands jeffrey@co2xair.nl Johanna Ek Wahlqvist **BIORECRO AB** johanna.ek.wahlqvist@biorecro.se Sweden Jon Zúñiga jon.zuniga@tecnalia.com Tecnalia Spain joost@endepoel.nl Joost Endepoel The Nederlands jlangerak@dmt-et.nl DMT The Nederlands Jort Langerak

José Luis Viviente	joseluis.viviente@tecnalia.com	Tecnalia	Spain
Juliana Monteiro	juliana.monteiro@tno.nl	TNO	The Nederlands
Julien Meyer	julien.meyer@ife.no	ute for Energy Techr	n Norway
Justin Stark	jrstark12@gmail.com	8,	
Karine Alkhatib	karinealkhatib@gmail.com		
Katrien Bernaerts	katrien.bernaerts@maastrichtuniversity.nl	Maastricht Universit	The Nederlands
Keith Patch	patch@alum.mit.edu	MIT	U.S.A.
Keith Simons	keith.simons@shvenergy.com		United Kingdom
Ken Chan	cks8333@yahoo.com		8
Kennedy Owade	kennedy.odr.owade@gmail.com		
Kiane de Kleijne	kiane.dekleijne@ru.nl		The Nederlands
Knut Bakke	kbakk@equinor.com		Norway
Konstantina Peloriadi	konstantinapelor@gmail.com		11011149
Kostis Atsonios	atsonios@certh.gr		Greece
L. Engelmann	engelmann@comm.rwth-aachen.de		Germany
Laura Almar Liante	lauallia@itq.upv.es		Spain
Laura Bertinazzi	bertinazzi@studiolce.it		Italy
Laura Marti	lmarti@aimplas.es		Spain
Laura Navarrete	launaal@itq.upv.es	uto de Tecnología Qu	-
Laurence Naiglin	lnaiglin@ayming.com	no de Techologia Qu	France
Laurens van Zelst	lhavzelst@gmail.com		France
Leonardo Roses	leonardo.roses@hygear.com	HyGear	The Nederlands
Letitia Petrescu	letitiapetrescu@chem.ubbcluj.ro	UBB Cluj	Romania
Ljubisa Gavrilovic	ljubisa.gavrilovic@ife.no	IFE	
Lorena Paseta	· ·	II'L	Norway
Luca Colombo	lorena.paseta@gmail.com lucacolombo2612@gmail.com		
Luca Di Felice	l.d.felice@tue.nl	TU Eindhoven	The Nederlands
			The Neuerlanus
Luigi Amato Luigi Panzone	amato.luigi2@gmail.com l.panzone@tue.nl	TU/e	The Nederlands
Luís M Romeo	luismi@unizar.es	10/e	
Luiza Couto	l.couto@nemho.com		Spain
M. Etxeberria-Benavide	miren.etxeberria@tecnalia.com		Spain
	matti.noponen@elcogen.com		Spain Finland
M. Noponen		Luinnaite of Zone con	
Magdalena Malankowsk	magnal@unizar.es	Jniversity of Zaragoz	-
Manjeet Chhetri Marcin Sleczkowski	chhetri.chem4energy@gmail.com	niversity of Notre Da	
	m.sleczkowski@maastrichtuniversity.nl		The Nederlands
Marco Favaro	marco.favaro@helmholtz-berlin.de	Imholtz Zentrum Be	•
Marco Ugolini	marco.ugolini@carefor-engineering.eu	Carefor	Italy
Margot Llosa	margot.llosa@tecnalia.com	Tecnalia	Spain
a Dolores Hernandez-A	md.hernandez@repsol.com	Repsol	Spain
Maria Moragues			
Canovas	maria.moragues-canovas@ec.europa.eu		
Marianne Haberbauer	marianne.haberbauer@k1-met.com		Austria
Marija Saric	<u>marija.saric@tno.nl</u>	TNO	The Nederlands
Marijke Jacobs	marijke.jacobs@vito.be		Belgium
Marika Luzzetti	marikaluzzetti@gmail.com		
Marios Katsiotis	<u>m.katsiotis@titan.gr</u>	Titan	Greece
Marleen Rombouts	marleen.rombouts@vito.be	vito	Belgium
Marta Cruz Fernandez	marta.cruz-fern and ez@tatasteeleurope.com	Tata Steel	The Nederlands
Marta Figueiredo	m.c.costa.figueiredo@tue.nl	TU Eindhoven	The Nederlands
Martina Serafini	martina.serafini6@unibo.it	University of Bologn	
Maryam Bayati	maryam.bayati@northumbria.ac.uk	1	United Kingdom
Md Bin Yeamin	yeamin.mdbin@urv.cat	URV	Spain
Melek Selcen BAŞAR	selcen.basar@tupras.com.tr		Turkey
Metin Gul	metin.gul@arcelik.com	Arcelik	Turkey
meun Gui	menn.gur@arcenk.com	AICEIIK	Turkey

Misheel Frenchesses	misheal from hours Quellous and		C
Michael Frambourg	michael.frambourg@volkswagen.de	CNID	Germany
Michael Marani Michael Weißner	michael.marani@cnr.it	CNR	Italy
	michael.weissner@volkswagen.de	Volkswagen	Germany
Michail Tsampas	m.tsampas@differ.nl	Differ	The Nederlands
Mireille Faist	mireille.faist@quantis-intl.com	Quantis	Switzerland
Miriam Lorenzo	miriam.lorenzo@heraholding.com	Hera Holding	Spain
>hammad Shahnawaz Kl	khanshahnawazamu@gmail.com	garh Muslim Univer	
Muhammad Mubashir	<u>m.mubashir@tue.nl</u>	TU Eindhoven	The Nederlands
N. Dunphy	n.dunphy@ucc.ie		Ireland
N. Kanellopoulos	n.kanellopoulos@inn.demokritos.gr		Greece
Nasim Heydari	heydari.nasim@gmail.com		
Navid Khallaghi	navid.khallaghi@manchester.ac.uk	niversity of Manches	-
Ngochan Huynhthi	ngochan.huynhthi@engie.com	Engie	France
Niccolò Paccotti	niccolo.paccotti@gmail.com		T 1.
Nikhil Kumar	nikhi176107105@iitg.ac.in		India
Nithin Tadikamalla	<u>nithin.tbk@gmail.com</u>	- ·	
Nouaamane Kezibri	nouaamane.kezibri@engie.com	Engie	France
Oana David	oana.david@tecnalia.com	Tecnalia	Spain
Olivier Lorain	o.lorain@polymem.fr	Polymem	France
Osman Eral	osman.eral@tupras.com.tr		Turkey
Pablo Ortiz	pablo.ortiz@tecnalia.com	lia Research and Inn	· · · ·
Padraig Fleming	padraig.fleming@ervia.ie	Ervia	Ireland
Panagiotis Boutikos	mpoutikos@certh.gr		Greece
Paola Diomede	p.diomede@maastrichtuniversity.nl	Maastricht Universit	
Patrizia Paradiso	pparadiso@c5lab.pt	c5lab	Portugal
Paul Cobden	paul.cobden@swerim.se	Swerim	Sweden
Paul Schreurs	paul.schreurs@vlaio.be		Belgium
Peter Vang Hendriksen	pyhe@dtu.dk		Denmark
Peter Vang Hendriksen Pierre Olivier	pvhe@dtu.dk pierre.olivier@engie.com	Engie	Denmark France
Pierre Olivier	pierre.olivier@engie.com	Engie	
	pierre.olivier@engie.com polina.ogloblina@gmail.com	-	France
Pierre Olivier Polina Ogloblina Raf Roelant	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com	Engie Process design cente PNO Consultants	France orfhe Nederlands
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com	Process design cente	France
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizun	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com	Process design cente	France The Nederlands Belgium
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou teginald-Michel Koizum Remya Nair	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no	Process design cente PNO Consultants	France France Nederlands Belgium Norway
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no	Process design cente PNO Consultants SINTEF Industry	France France Belgium Norway Norway
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizun Remya Nair Richard Heyn Richard Porter	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no <u>r.t.j.porter@ucl.ac.uk</u>	Process design cente PNO Consultants SINTEF Industry UCL	France France Belgium Norway Norway Jnited Kingdom
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard van de Sanden	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no <u>r.t.j.porter@ucl.ac.uk</u> <u>m.c.m.vandesanden@differ.nl</u>	Process design cente PNO Consultants SINTEF Industry UCL Differ	France France Belgium Norway Norway Jnited Kingdom The Nederlands
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Heyn Richard Porter Richard van de Sanden Robert Makkus	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com	Process design cente PNO Consultants SINTEF Industry UCL	France France Define Nederlands Belgium Norway Norway Jnited Kingdom The Nederlands Fhe Nederlands
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard van de Sanden Robert Makkus Roger Hansen	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk <u>m.c.m.vandesanden@differ.nl</u> robert.makkus@hygear.com rog@equinor.com	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear	France France Free Nederlands Belgium Norway Norway Jnited Kingdom The Nederlands Fhe Nederlands Norway
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO	France France Define Nederlands Belgium Norway Norway Jnited Kingdom The Nederlands The Nederlands Norway Norway
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear	France France Define Nederlands Belgium Norway Jorway Jnited Kingdom The Nederlands The Nederlands Norway Norway Canada
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling	France France Define Nederlands Belgium Norway Jnited Kingdom The Nederlands The Nederlands The Nederlands Norway Norway Canada Spain
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met	France France Define Nederlands Belgium Norway Jnited Kingdom The Nederlands The Nederlands The Nederlands Norway Norway Canada Spain Austria
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess Samuel Saysset	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com samuel.saysset@engie.com	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met Engie	France France France France France France France France France France
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess Samuel Saysset andra Hernandez Aldav	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com samuel.saysset@engie.com	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met	France France Define Nederlands Belgium Norway Jnited Kingdom The Nederlands The Nederlands The Nederlands Norway Norway Canada Spain Austria France
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess Samuel Saysset andra Hernandez Aldav Saskia Walravens	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com samuel.saysset@engie.com s.hernandezaldave@swansea.ac.uk w.h.l.walravens@tue.nl	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met Engie	France France France France France France France France France France
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess Samuel Saysset andra Hernandez Aldav Saskia Walravens Saudagar Dongare	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com sabine.spiess@k1-met.com s.hernandezaldave@swansea.ac.uk w.h.l.walravens@tue.nl saudagar1108@gmail.com	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met Engie Swansea University	France France PaThe Nederlands Belgium Norway Jnited Kingdom The Nederlands The Nederlands Norway Norway Canada Spain Austria France Jnited Kingdom The Nederlands
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess Samuel Saysset andra Hernandez Aldav Saskia Walravens Saudagar Dongare Secil Torun	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com samuel.saysset@engie.com s.hernandezaldave@swansea.ac.uk w.h.l.walravens@tue.nl saudagar1108@gmail.com secil.torun@engie.com	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met Engie	France France PaThe Nederlands Belgium Norway Norway Jnited Kingdom The Nederlands Norway Norway Canada Spain Austria France Jnited Kingdom The Nederlands France
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess Samuel Saysset andra Hernandez Aldav Saskia Walravens Saudagar Dongare Secil Torun Serena Agnolin	pierre.olivier@engie.com polina.ogloblina@gmail.com roelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com samuel.saysset@engie.com s.hernandezaldave@swansea.ac.uk w.h.l.walravens@tue.nl saudagar1108@gmail.com s.agnolin@tue.nl	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met Engie Swansea University Engie	France Parfhe Nederlands Belgium Norway Jnited Kingdom The Nederlands The Nederlands Norway Canada Spain Austria France Jnited Kingdom The Nederlands France The Nederlands
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess Samuel Saysset andra Hernandez Aldav Saskia Walravens Saudagar Dongare Secil Torun Serena Agnolin Serena Poto	pierre.olivier@engie.com polina.ogloblina@gmail.com reelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com samuel.saysset@engie.com s.hernandezaldave@swansea.ac.uk w.h.l.walravens@tue.nl saudagar1108@gmail.com s.agnolin@tue.nl s.poto@tue.nl	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met Engie Swansea University	France France PaThe Nederlands Belgium Norway Norway Jnited Kingdom The Nederlands Norway Norway Canada Spain Austria France Jnited Kingdom The Nederlands France
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess Samuel Saysset andra Hernandez Aldav Saskia Walravens Saudagar Dongare Secil Torun Serena Agnolin Serena Poto Shekhar Shinde	pierre.olivier@engie.com polina.ogloblina@gmail.com reelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com sabine.spiess@k1-met.com samuel.saysset@engie.com s.hernandezaldave@swansea.ac.uk w.h.l.walravens@tue.nl saudagar1108@gmail.com s.agnolin@tue.nl s.poto@tue.nl shindeshekhar397@gmail.com	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met Engie Swansea University Engie	France Parfhe Nederlands Belgium Norway Jnited Kingdom The Nederlands The Nederlands Norway Canada Spain Austria France Jnited Kingdom The Nederlands France The Nederlands
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess Samuel Saysset andra Hernandez Aldav Saskia Walravens Saudagar Dongare Secil Torun Serena Agnolin Serena Poto Shekhar Shinde Shijil A N	pierre.olivier@engie.com polina.ogloblina@gmail.com reelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com samuel.saysset@engie.com s.hernandezaldave@swansea.ac.uk w.h.l.walravens@tue.nl saudagar1108@gmail.com s.agnolin@tue.nl s.poto@tue.nl	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met Engie Swansea University Engie	France Parfhe Nederlands Belgium Norway Jnited Kingdom The Nederlands The Nederlands Norway Canada Spain Austria France Jnited Kingdom The Nederlands France The Nederlands
Pierre Olivier Polina Ogloblina Raf Roelant Rea Papaioannou Reginald-Michel Koizum Remya Nair Richard Heyn Richard Porter Richard van de Sanden Robert Makkus Roger Hansen Rosa Manzo Ryan Bourns S. Perez Sabine Spiess Samuel Saysset andra Hernandez Aldav Saskia Walravens Saudagar Dongare Secil Torun Serena Agnolin Serena Poto Shekhar Shinde	pierre.olivier@engie.com polina.ogloblina@gmail.com reelant@process-design-center.com rea-fani.papaioannou@pnoconsultants.com reginald.seeker@gmail.com remya@seid.no rhh@sintef.no r.t.j.porter@ucl.ac.uk m.c.m.vandesanden@differ.nl robert.makkus@hygear.com rog@equinor.com rosama@uio.no ryan@carbonupcycling.com susana.perez@tecnalia.com sabine.spiess@k1-met.com sabine.spiess@k1-met.com samuel.saysset@engie.com s.hernandezaldave@swansea.ac.uk w.h.l.walravens@tue.nl saudagar1108@gmail.com s.agnolin@tue.nl s.poto@tue.nl shindeshekhar397@gmail.com	Process design cente PNO Consultants SINTEF Industry UCL Differ HyGear UIO Carbon up cycling K1-Met Engie Swansea University Engie	France Parfhe Nederlands Belgium Norway Jnited Kingdom The Nederlands The Nederlands Norway Canada Spain Austria France Jnited Kingdom The Nederlands France The Nederlands

Shruti Anand Katti Sigurd Oien-Odegaard Silvia Lasala Simona Marinelli Simone Camazzola Sirui Li Sonia Escolástico Sonia Gómez Sophie Grünewald Soraya Prieto Soren Jensen Stefan Pouw Stefan Welzel Stefania Nacci Süleyman Er Sved Zaheer Abbas Sylfest Myklatun T. Swinkels Tabea Stadler Terence Liu Terje Hauan Thijs Peters Thijs van Raak Thraiye Hemed Tim Wissink Timo Lehtinen Tip Meckel Truls Norby Unni Olsbye Utku Deniz Valentina Cechetto Vesna Middelkoop Vincenzo Rosario La Franca Pitarresi Vincenzo Spallina Vittoria Cosentino Walter Eevers Waqas Tanveer William Marechal Wolff-Ragnar Kiebach Wout Ververs Xiufu Sun Yucheng Wang Yuliang LIU Yvon Mompeyssin Zançat Sahin Zubair Muhammad

s.a.katti@student.tue.nl sigurdoi@kjemi.uio.no silvia.lasala@univ-lorraine.fr simona.marinelli@unimore.it simone.camazzola@gmail.com s.li1@tue.nl soesro@upvnet.upv.es sgomezalaez@gmail.com gruenewald@ecodesign-company.com soraya.prieto@tecnalia.com soeren.jensen2@pentair.com s.pouw@tue.nl s.welzel@differ.nl stefania.nacci@tiscali.it s.er@differ.nl syedzaheer.abbas@manchester.ac.uk smy@equinor.com tijn.swinkels@dens.one tabea.stadler@kit.edu terence.liu@northumbria.ac.uk terje@seid.no thijs.peters@sintef.no t.a.b.j.v.raak@tue.nl thraiye@gmail.com t.wissink@tue.nl timo.lehtinen@elcogen.com tip.meckel@beg.utexas.edu truls.norby@kjemi.uio.no unni.olsbye@kjemi.uio.no utku.deniz@tupras.com.tr v.cechetto@tue.nl vesna.middelkoop@vito.be vincenzolafranpi@gmail.com vincenzo.spallina@manchester.ac.uk v.cosentino@kt-met.it walter.eevers@vito.be w.h.tanveer@swansea.ac.uk

w.marechal@polymem.fr <u>woki@dtu.dk</u> <u>w.j.r.ververs@tue.nl</u> <u>xisu@dtu.dk</u> yucheng.wang@northumbria.ac.uk wendyliu200909@gmail.com <u>yvonmompeyssin@yahoo.fr</u> z.e.sahin@tue.nl

2019msenr13@student.uet.edu.pk

The Nederlands UIO Norway Univ Lorraine France Italy

> The Nederlands CSIC Spain

Austria Tecnalia Research & Spain Pentair U.S.A. cal University of Ein The Nederlands DIFFER The Nederlands Italv The Nederlands DIFFER niversity of ManchesUnited Kingdom Norway The Nederlands uhe Institute of Techi Germany North Umbria Jnited Kingdom Norway Norway TU Eindhoven The Nederlands TU Eindhoven The Nederlands Finland 'exas, Gulf Coast Car U.S.A. University of Oslo Norway UIO Norway Turkey

TU Eindhoven Гhe Nederlands VITO Belgium

niversity of ManchestJnited Kingdom KΤ Italy CO2 Value Europe Belgium Swansea University Jnited Kingdom POLYMEM S.A. France DTU Denmark TU Eindhoven The Nederlands DTU Denmark Iorthumbria Universit/Inited Kingdom The Netherlands France The Nederlands Pakistan