

MEMBER

Advanced MEMB ranes and membrane assisted processes for pre- and post-combustion CO_2 capture

H2020 GRANT AGREEMENT NUMBER: 760944

Start date of project: 01/01/2018

Duration: 4 years

WP08 - Dissemination and communication

Workshop on "Membrane processes for CO₂ capture Booklet

Topic:NMBP-20-2017: High-performance materials for optimizing carbon dioxide captureFunding scheme:Innovation action tCall identifier:H2020-NMBP-2016-2017

Due date of deliverable:	Actual submission date: 25-02-2020	Reference period: 01-07-2019 – 31-12-2020
Document cla	Prepared by ^(**) :	
MEMBER-WP08-D0-Bookle	TECNALIA	

Version	DATE	Changes	CHECKED	APPROVED
v11	25-02-2020	Final version	TECNALIA	J.L. Viviente

	Project funded by European Union's Horizon 2020 research and innovation programme (2014-2020)		
Dissemination Level			
PU	Public	X	
PP	Restricted to other programme participants (including the Commission Services)		
RE	Restricted to a group specified by the consortium (including the Commission Services)		
СО	Confidential, only for members of the consortium (including the Commission Services)		
CON	Confidential, only for members of the Consortium		

(*) for generating such code please refer to the Quality Management Plan, also to be included in the header of the following pages

(**) indicate the acronym of the partner that prepared the document

Content

1.	. EXECUTIVE SUMMARY	4
	1.1. Description of the deliverable content and purpose	4
2	. Presentations	5
	2.1. An overview on MEMBER project (José Luis Viviente – TECNALIA)	5
	2.2. Mixed Matrix Membranes for CO2 capture (Freek Kapteijn – TU Delft)	.33
	2.3. High temperature catalysts and sorbents (Julien Meyer – IFE)	.80
	2.4. Pd based membranes development (Ekain Fernández – TECNALIA)	114
	2.5. Membrane reactors – current status and perspectives (Fausto Gallucci – TUE)	138
	2.6. Process design for CO2 capture (Vittoria Cosentino - KT & Leonardo Roses - HYGEAR)).	176
	2.7. An overview on BIONICO project (Marco Binotti – POLIMI)	202
	2.8. Environmental aspects of membrane-based CO2-capture (Mireille Faist – QUANTIS)2	239

1. EXECUTIVE SUMMARY

1.1. Description of the deliverable content and purpose

The present document includes the presentation of the 1^{st} workshop organised by the project MEMBER. The workshop on "Membrane processes for CO₂ capture" was hosted by TUE on January the 15^{th} , 2020. 53 persons attended the workshop. The agenda is shown in the figure hereafter.

Workshop on membrane processes for CO₂ capture

Auditorium 4, Eindhoven University of Technology, January 15th, 2020

Agenda

9:30 - 10:00 Registration/Coffee

- 10:00 10:15 Introduction Welcome (Fausto Gallucci, José Luis Viviente)
- 10:15 10:45 An overview on MEMBER project (José Luis Viviente TECNALIA)

10:45 - 11:10 Coffee Break - posters

- 11:10 11:40 Mixed Matrix Membranes for CO₂ capture (Freek Kapteijn TU Delft)
- 11:40 12:10 High temperature catalysts and sorbents (Julien Meyer IFE)
- 12:10 12:40 Pd based membranes development (Ekain Fernández TECNALIA)

12:40 - 13:40 Lunch - posters

- 13:40 14:10 Membrane reactors current status and perspectives (Fausto Gallucci TUE)
- 14:10 14:40 Process design for CO2 capture (Vittoria Cosentino KT & Leonardo Roses HYGEAR))
- 14:40 15:10 An overview on BIONICO project (Marco Binotti POLIMI)
- 15:10 15:40 Environmental aspects of membrane-based CO2-capture (Mireille Faist QUANTIS)

15:40 - 16:00 Coffee Break - posters

16:00 - 16:30 An overview on C2FUEL project (Camel Makhlofi - ENGIE)

16:30 - 17:00 Closure of the workshop (Fausto Gallucci, José Luis Viviente)

Figure 1. Agenda of the 1st public workshop organised by MEMBER

- 2. Presentations
- 2.1. An overview on MEMBER project (José Luis Viviente TECNALIA)

Workshop on membrane processes for CO₂ capture Jam 15th, 2020 – TUE, Eindhoven, The Netherlands

Advanced MEMBranes and membrane assisted procEsses for pre- and post- combustion CO₂ captuRe MEMBER

https://member-co2.com/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760944

Duration: 4 years. Budget: € 9 596 541,50 Starting date: 01 January 2018 EU contribution: €7 918 901

Contact: joseluis.viviente@tecnalia.com

The present publication reflects only the author's views. The Commission is not responsible for any use that may be made of the information contained therein.

15/01/2020 Page I

Outline

- I. Introduction
- 2. Project Objectives
- 3. Main goals and S&T objectives
- 4. Partnership
- 5. Overall approach and methodology
- 6. Expected results
- 7. Prototype status
- 8. Environmental LCA and economical analysis

15/01/2020 Page 2

Nowadays, mankind is facing two of the most difficult challenges in its life:

global warming and

Iocal pollution of urban areas.

15/01/2020 Page 3

Energy production 21st century

- Majority from fossil fuel derivatives (carbon based): Currently, more than 80% of global primary energy use is fossil based. Over the last decade, 85% of the increase in global use of energy was fossil based.
- CO₂ production

Greenhouse gasses

• Effect

Trap IR-radiation (heat)

• Emission CO₂

Natural & human activity

15/01/2020 Page 4

Global carbon dioxide emissions from human activity, compared to four different possible futures as depicted in IPCC scenarios. Fuss et al. 2014

EU Commission's The Low Carbon Roadmap (and the world contract) climate suggest а reduction of >80% of CO_2 emissions by 2050 compared to levels at the beginning of the 21st century.

2018:37,1 GtCO₂ (www.globalcarbonproject.org)

Transition process requires a new energy system without C at the with radical end technical infrastructure solutions and investments.

. . . .

Climate Action in the UN's Sustainable Development Goals (SDGs): Limiting global warming to 1.5°C (<u>https://www.ipcc.ch/sr15/</u>)

Greenhouse gasses

Reduce emission to environment

Increasing Energy efficiency; Low carbon processes Net-negative global emission Search for renewable energy carrier: Hydrogen,

- Cost of CO₂ emission (ETC)
- Carbon Capture, Utilization and Storage

In the transition to a fully low-carbon economy, the CCUS is key to reconcile the demand for fossil fuels, with the need to reduce greenhouse gas emissions and fight climate change.

15/01/2020

Page 7

tecnalia

Inspiring Business

Carbon <u>Capture</u> & Storage techniques

- Pre-combustion
- Post-combustion

I. Introduction: CCS/CCU techniques

**** * * ***

Carbondioxide for:

- Feedstock of chemicals:
 - Fertilizer, polymers
- Solvent
- Carbonation beverages
- Synthetic fuels
- Horticulture
- Construction materials: aggregates and concrete
- Storage (liquid, fixation)
- > EOR

$$\mathrm{CO}_2(g) + \mathrm{XO} \rightarrow \mathrm{XCO}_3(s)$$

15/01/2020 Page 8

MEMBER project aims to reduce the cost of the Carbon Dioxide capture technologies to fight against the climate change.

MEMBER has been built on the basis of the best materials and technologies developed in three former FP7 projects:

- \succ M⁴CO₂ (Energy efficient MOF-based Mixed Matrix Membranes for CO₂ Capture),
- FluidCELL (Advanced m-CHP fuel CELL system based on a novel bio-ethanol Fluidized bed membrane reformer),
- > ASCENT (Advanced Solid Cycles with Efficient Novel Technologies)

H2020 – Topic addressed:

NMBP-20-2017: High-performance materials for optimizing carbon dioxide capture

15/01/2020 Page 9

2. Objectives

The key objective of MEMBER is to demonstrate state-of-the-art CO_2 capture technologies in an industrially relevant environment. To achieve this, MEMBER will scale-up and manufacture advanced materials and prove their added value in terms of sustainability and performance at TRL 6 in novel membrane based technologies for pre- and post-combustion CO_2 capture in power plants as well as in H₂ generation systems with integrated CO_2 capture and meet the targets of the European SET plan.

Two different technological solutions involving advanced materials will be developed and demonstrated at three different end user's facilities:

- > Advanced Mixed Matrix Membranes (MMMs) for pre- and postcombustion CO_2 capture in power plants ($H_2/CO_2 \& CO_2/N_2$ respect.)
- > A combination of metallic hydrogen membranes and CO_2 sorbent integrated into an advanced Membrane Assisted Sorption Enhanced Reforming (MA-SER) process for pure H₂ production with CO₂ capture.

15/01/2020 Page 11 (Disclosure or reproduction without prior permission of MEMBER is prohibited).

2. Objectives: MA-SER concept

Three main components:

- H_2 production with in situ CO_2 and Ι. H_2 removal
 - Hydrogen purification through membranes
 - Capture of CO_2 by CaO sorbent
- Regeneration sorbent with steam at 2. elevated temperatures
- Supply heat by reformate 3. combustion of carbon lean, hydrogen rich stream

	-	0			
	Abr	Reaction	ΔH_r^0	Ref.	Eq.
	Au.		[kJ/mol]	comp.	
	Reformer				
	SMR	$CH_4 + H_2O \leftrightarrow CO + 3H_2$	+206	CH_4	(5)
	WGS	$CO + H_2O \leftrightarrow CO_2 + H_2$	-41.1	CO	(6)
	Car	$CaO + CO_2 \leftrightarrow CaCO_3$	-178	CaO	(7)
Regenerator					
	Cal	$CaCO_3 \leftrightarrow CaO + CO_2$	+178	CaCO ₃	(8)
	Burner				
	HC	$2H_2 + O_2 \rightarrow 2H_2O$	-	H ₂	(9)
	CC	$CO + O_2 \rightarrow CO_2 + H_2O$	_	CO	(10)
	MC	$\mathrm{CH}_4 + 2\mathrm{O}_2 \rightarrow \mathrm{CO}_2 + 2\mathrm{H}_2\mathrm{O}$	_	CH ₄	(11)

MEMBER Workshop, Jan. 15, 2020; TUE, Eindhoven - The Netherlands (Disclosure or reproduction without prior permission of MEMBER is prohibited).

15/01/2020 Page 12 Inspiring Business

2. Project Objectives

tecna

- Prototype A, targeted for pre-combustion capture in power plants using MMMs at the 2MWth biomass gasifier of **CENER (Spain) aimed for BIO-CCS** demonstration.
- Prototype B targeted for post-combustion capture in power plants using MMM at the 8.8MW CHP facilities of Agroger (GALP, Portugal).
- > Prototype C targeted for pure hydrogen production with integrated CO₂ capture using MA-SER at the IFE-HyNor Hydrogen Technology **Centre (Norway)** under the supervision of ZEG POWER.

		0	I	/ 1
	Technology	CO ₂ Capture	Capture cost [€/ton]	Demo site
Pre-comb. Power (IGCC)	MMM	> 90	< 30	CENER
Post-comb. Power (Coal)	MMM	> 90	< 40	GALP
H ₂ with integrated CO ₂ capture	MA-SER	> 90	< 30	IFE- HYNOR

Main operation conditions & performance targets for the MEMBER prototypes.

MEMBER Workshop, Jan. 15, 2020; TUE, Eindhoven - The Netherlands

15/01/2020 Page 13 (Disclosure or reproduction without prior permission of MEMBER is prohibited).

OBJ. I: MARKET & BUSINESS OBJECTIVES

- > To overcome CCS market barriers with an ambitious set of CCS solutions.
- To take European industrial companies (Materials manufacturers, engineering companies and end users) to a leading position in the CCS market, generating economic growth and job opportunities.

OBJ. 2: ECONOMIC OBJECTIVES

- Compliance with strict cost-effectiveness and performance targets:
 - Pre-combustion Mixed Matrix Membrane system for Power generation
 - Post-combustion Mixed Matrix Membrane system for Power generation
 - Mixed Matrix Membrane materials for MEMBER
 - MA-SER system for pure hydrogen production with integrated CO_2 capture
 - MA-SER materials for MEMBER

15/01/2020 Page 14

OBJ. 3: TECHNICAL OBJECTIVES

- To take to manufacturing development stage (from MRL 4-5 to MRL 6) a portfolio of materials and membranes of MMM technology:
 - Process optimization on pilot production lines (Polymers and MOFs).
 - Scaling production lines for the fine-tuned core material: MOF > 1kg/batch;
 - Scaling up the production of hollow fibres MMMs to >10.000 hollow fibers / batch
 - Scale up the membrane module size to >10 m²
 - Manufacturing of MMM modules for the pre- and post-combustion CO₂ capture in Power Plants
 - 0
- Move from MRL 4-5 to MRL 6 a portfolio of materials of MA-SER technology:
 - Scale up production for core material: Sorbents: 50-100 kg/day; catalyst: 50 kg/batch;
 - Scaling up the production of Pd-based H₂ membranes to 8 membranes / batch
 - Lifetime Analysis of MA-SER at TRL6
 - Demonstration of compliance with CCS codes and standards. Installations in experimental demo plants to support and provide additional information on product characterization from qualification testing.

OBJ. 3: TECHNICAL OBJECTIVES

- Development of a software tool to simulate MEMBER components and CO₂ capture energy performance from the earliest design phases:
 - Module/reactor design and process simulation (at large scale) for full integration of the MMM systems for pre- and post-combustion, and for MA-SER for pure H₂ production with integrated CO₂ capture
 - Development of a model of the MA-SER reformer
 - Validation of the models through demonstration in relevant conditions (demo site)

OBJ. 4: DEMONSTRATION OBJECTIVES

Demonstration of MEMBER systems and related business models in 3 representative demonstration sites across Europe, covering different sectors, membrane based technologies and CO₂ containing streams

3. Main Goals and S&T objectives

OBJ. 5: ENVIRONMENTAL OBJECTIVES

To quantify the environmental impacts of the proposed holistic solutions through life cycle assessment based on 3 case studies throughout Europe

OBJ. 6: SOCIAL OBJECTIVES

Job creation and increase awareness and involvement within the whole social & industrial chain: plant owners, manufacturers, installers, authorities, students, CCS organizations, general public, etc.

4. Partnership

- Multidisciplinary and complementary team.
- I7 partners from 9 countries.
- Industrial oriented (65%):
 - II SME/IND + 6 RTO/HES
- > 7 SMEs (41%) & 4 IND (24%)

15/01/2020 Page 18

5. Overall approach and methodology

15/01/2020 Page 20

Inspiring Business

tecnalia

5. Overall approach and methodology

15/01/2020 Page 21

#	Main exploitation product/ technologies/ others
I	MMM based system for pre-combustion CO ₂ capture
2	MMM based system for post-combustion CO ₂ capture
3	MA-SER system for pure H_2 production with integrated CO_2 capture
4	Advanced polymers for post-combustion MMMs
5	Advanced MOFs for pre- and post-combustion MMMs
6	Advanced MMMs for pre- and post-combustion
7	Advanced sorbents for MA-SER
8	Advanced catalysts for MA-SER
9	Advanced Pd-based H ₂ membranes for MA-SER
10	Software tool for Membrane reactor and SER design. Membrane separation modules
11	Consulting services on LCA of CO ₂ capture

15/01/2020 Page 22

7. Prototype status: Prototype A

System layout selected

- I membrane module system, operating at 4.5 bar Recovery rate 88%; Purity: 98.3%.
- Multi-module systems enhance the hydrogen recovery: 73% (I stage) to 86% (2 stages)
- Lower Permeance reduces the hydrogen separation
- Reduced Selectivity reduces the CO₂ recovery
- System states defined
 - Start-up sequence, normal operation, stand-by, controlled shutdown and emergency shut-down described

> P&ID made

- Interfaces with gas cleaning system and gasifier defined
- Power consumption estimated
- Information documented in Process Book Prototype A

7. Prototype status: Prototype B

System layout selected

- 2 membrane module system, operating at 8 bar_a
 Membrane area 10 m² and 0.7 m² respectively for module 1 and 2
 Recovery rate >90%; Purity: >90%.
- Reduced Permeance lowers the recovery while purity is not affected
 - An increase in operation pressure can counteract the effect
- Lower Selectivity lowers the CO₂ purity
- System states defined
 - Start-up sequence, normal operation, stand-by, controlled shutdown and emergency shut-down described

P&ID made

- Interfaces with the 8.8 MW CHP facility of Agroger defined
- Power consumption estimated
- Information documented in Process Book Prototype B

7. Prototype status: Prototype C

Process scheme

• The process scheme has been finalised in order to integrate the MA-SER reactor in existing facility at IFE-HyNor premises

MA-SER reactor

- The design of MA-SER reactor has been addressed in order to address the project objective of pure H_2 production with integrated CO_2 capture
- Piping & Instrumentation Diagrams
 - Interfaces with the existing facility at IFE-Hynor premises defined
- Information documented in Process Book Prototype C

Reference Systems, to which MEMBER systems are compared

	Without capture	With capture
Pre-combustion	IGCC power plant	IGCC power plant with Selexol absorption
Post-combustion	Coal Power Plant	Coal Power Plant with MEA absorption
Integrated H ₂ production	Steam reforming process (biomass based scenario)	Steam reforming process with MDEA absorption

Thank you for your attention

https://member-co2.com/

Contact: joseluis.viviente@tecnalia.com

Acknowledgement: For the CO2 molecule used in the logo: The original uploader was Frederic Marbach at French Wikipedia [GFDL (<u>http://www.gnu.org/copyleft/fdl.html</u>)

2.2. Mixed Matrix Membranes for CO2 capture (Freek Kapteijn – TU Delft)

Member workshop Eindhoven 15 January 2020

Mixed Matrix Membranes for CO₂ capture Practical aspects of **membrane performance testing** and interpretation

Freek Kapteijn Catalysis Engineering Delft University of Technology

What you can expect.....

- Goal
- Basics
 - Definitions
 - Membrane types
- Experimental
 - Steady state, transient techniques
 - Data interpretation aspects
- Modelling
- Take home message

Membrane separation = Energy efficiency

Post-combustion CO₂ capture

Bio-gas, natural gas upgrading CO₂ / CH₄ mixtures

CO₂ selective membranes

Membrane performance testing

- Characterization membrane in operation
 - Flux through membrane (mol s⁻¹ m⁻²)
 - of a specific component
 - as single component, in a mixture
 - dependency on operational variables
 - (partial) pressures, temperature
 - Separation of a mixture
 - Comparison with other systems
 - Normalization
 - Applied partial pressure difference Permeance
 - Membrane thickness Permeability

25/02/2021

Definitions – other units

 molar transport expressed in ml_{sTP} (1 mmol = 22.4 cm³ @ 0°C, 1 atm)

 $\frac{\mathrm{cm}_{STP}^{3}}{\mathrm{s} \times \mathrm{cm}^{2}} \quad 0.446 \frac{\mathrm{mol}}{\mathrm{s} \times \mathrm{m}^{2}}$

SI units

Permeance - Gas Permeation Unit $GPU = 10^{-6} \frac{cm_{STP}^3}{s \times cm^2 \times cm Hg}$ $3.346 \times 10^{-10} \frac{mol}{s \times m^2 \times Pa}$

• Permeability
- Barrer Barrer =
$$10^{-10} \frac{\text{cm}_{STP}^3 \times \text{cm}}{\text{s} \times \text{cm}^2 \times \text{cm} \text{Hg}}$$
 $3.346 \times 10^{-16} \frac{\text{mol} \times \text{m}}{\text{s} \times \text{m}^2 \times \text{Pa}}$

Units interconversion - relation

- Relation between GPU (permeance) and Barrer (permeability):
 - Membrane of thickness 1 μm (10⁻⁴ cm) and 1 Barrer has a permeability of 1 GPU:

$$P_i = \frac{P_i}{d}$$

$$\frac{1 \text{ Barrer}}{10^{-4} \text{ cm}} = 10^{-10} \frac{\text{cm}_{STP}^3 \times \text{cm}}{\text{s} \times \text{cm}^2 \times \text{cm} \text{ Hg}} \times 10^4 \text{ cm}^{-1} = 10^{-6} \frac{\text{cm}_{STP}^3}{\text{s} \times \text{cm}^2 \times \text{cm} \text{ Hg}} = 1 \text{ GPU}$$

Member Targets

- Protoytype A Precombustion
 - Permeance $H_2 = 100 \text{ GPU}$
 - H_2/CO_2 selectivity = 18
- Prototype B Post-combustion
 - Permeance $CO_2 = 300 \text{ GPU}$
 - CO_2/N_2 selectivity = 70

Thickness variable

Comparison properties-performance

Barrer lacksquare

thickness 0.3 μm (3.10⁻⁵ cm)

- 30	100
- 90	300
- 500	1667
- 800	2667

- 1200

4000

GPU

$$\frac{1 \text{ Barrer}}{3 \times 10^{-5} \text{ cm}} = 10^{-10} \frac{\text{cm}_{STP}^3 \times \text{cm}}{\text{s} \times \text{cm}^2 \times \text{cm} \text{ Hg}} \times \frac{10^5}{3} \text{ cm}^{-1} = 3.3 \times 10^{-6} \frac{\text{cm}_{STP}^3}{\text{s} \times \text{cm}^2 \times \text{cm} \text{ Hg}} = 3.3 \text{ GPU}$$

Other nomenclature membranes

Separation factor

mixed gas selectivity

$$\mathcal{A}_{AB} = \frac{\left(X_{A} / X_{B}\right)_{permeate}}{\left(X_{A} / X_{B}\right)_{retentate}}$$

Ideal separation factor

$$ideal S_F(AB) = \frac{P_A}{P_B}$$

ideal selectivity, pure gases

PureApplChem 68(1996)1479-1489 IUPAC-Membranes W.J. Koros, Y.H. Ma, and T. Shimidzu

Workshop Member 15 January 2020 Eindhoven Membrane performances - polymers

Robeson upper bounds

L.M. Robeson / Journal of Membrane Science 320 (2008) 390-400

What is a Mixed-Matrix Membrane?

- Silica, Alumina
- Carbon, CMS
- Clays
- Zeolites
- CNT

Polymeric membrane (continuous phase)

containing an inorganic 'Filler'

Combination is expected to exhibit an improved *performance:*

- Permeability
- Separation selectivity
- Stability
 - Less plasticization
 - No loss performance

Workshop Member 15 January 2020 Eindhoven

FILLER

POLYMER

Chung, T. S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S., *Prog. Polym. Sci.* 32 **(2007)** 483-507 Zimmerman, C. M.; Singh, A.; Koros, W. J., *J. Membr. Sci.* 137 **(1997)** 145-154.

Workshop Member 15 January 2020 Eindhoven

MOF-based Mixed Matrix Membranes

and matrix required

Mahajan, R.; Koros, W. J., *Ind. Eng. Chem. Res.* 39 **(2000)** 2692-2696. Gascon, J.; Aktay, U.; Hernandez-Alonso, M. D.; van Klink, G. P. M.; Kapteijn, F., *J. Catal.* 261 **(2009)** 75-87.

Sorption and diffusivity filler can affect permeability and selectivity often counter-effective

T. Singh et al. Journal of Membrane Science 448 (2013) 160 M. Rezakazemi et al. Progress in Polymer Science 39 (2014) 817 D. Schneider PHYS. REV. APPLIED 12, 044034 (2019)

Workshop Member 15 January 2020 Eindhoven

Maxwell model - effect filler on permeability

Permeability ratios > ~100 no further improvement

H. Bux et al., J. Am.Chem. Soc., 131 (2009) 16000–16003 S. Shahid et al., J. Membr. Sci., 470 (2014) 166-177

• Fundamental insight needed

Moore, et al., *AIChE Journal* **2004**, *50* (2) 311 Diestel, et al. *Journal of Membrane Science* **2015**, *492*, 181

Workshop Member 15 January 2020 Eindhoven

General observations

Deviations from ideal membrane system

MEMBER

S.A. Hashemifard et al., Chemical Engineering Journal 172 (2011) 581 P.S. Goh et al., Separation and Purification Technology 81 (2011) 243 Vinh-Thang, & Kaliaguine, *Chemical reviews* **2013**, *113* (7) 498

General observations

• Voids

- Poor adherence filler-polymer
- Agglomeration filler
- Sedimentation

Faster transport No selectivity

Percolation danger

- Rigidification, chain orientation
- Pore blocking

Changing properties: + or -

- Surface modifications for interaction improvement
- Modified permeation models non-predictive

T.T. Moore, W.J. Koros / Journal of Molecular Structure 739 (2005) 87 S.A. Hashemifard et al., Chemical Engineering Journal 172 (2011) 581

Robeson plot – effect of filler

Experimental aspects

Examples of membrane modules

Module operation configurations

25/02/2021

PureApplChem 68(1996)1479-1489 IUPAC-Membranes

MEMBER

Workshop Member 15 January 2020 Eindhoven

Experimental methods

Membrane testing – module assumptions Single component

- Well mixed volumes
- Local conditions identical
- No sweep permeation

Pure feed: $N_{A} = \left(N^{F} - N^{R}\right) = \left(N^{P} \times x_{A}^{P}\right) \gg \left(N^{sweep} \times x_{A}^{P}\right)$ $N_{A} \square N^{sweep}$ Mixed feed: $N_{A} \gg N^{F} \times \left(x_{A}^{F} - x_{A}^{R}\right) \gg \left(N^{sweep} \times x_{A}^{P}\right)$ if : $N^{R} \gg N^{F}$ 25

Membrane testing – module assumptions Mixtures

$$N_i \gg \left(N^{sweep} \times x_i^P \right) \qquad \qquad N_A \square N^{sweep}$$

- Well mixed volumes
- Local conditions identical
- No sweep permeation

$$\partial_{ij} = \frac{\left(x_{i} / x_{j}\right)_{permeate}}{\left(x_{i} / x_{j}\right)_{retentate}}$$

What if sweep gas back-permeates?

- Round Robin experiments
 - Feed gas CO_2/N_2
 - Sweep 3 ml_{STP} /min He

- Pure gas measurement
 - Permeation 1 ml_{STP} /min He

Higher concentration in Permeate Too high flux calculated? Hindrance of permeation?

Workshop Member 15 January 2020 Eindhoven

Do assumptions hold?

Carefully consider configuration

Delft University of Technology

Delft

How to test for CSTR behaviour?

25/02/2021

equimolar CO₂/CH₄ mixture

T. Rodenas et al., Microporous Mesoporous Mater., 2014, 192, 35-42.

Can we rationalize this time needed?

- Permeability 2 8 Barrer
- Thickness 70 μm
- Pressure 4 and 1 bar (abs)
- CO₂ adsorption
 - 200-400 ml_{STP}/g MIL-101 (15 wt%)
 - 50 ml_{STP}/g MIL-53 (25 wt.%)

$J_i = \frac{N_i}{A}$	$\frac{mol}{s \times m^2}$
$P_i = \frac{J_i}{Dp_i}$	$\frac{mol}{s \times m^2 \times Pa}$
$P_i = P_i \times d$	$\frac{\text{mol} \times \text{m}}{\text{s} \times \text{m}^2 \times \text{Pa}}$

Estimate time it takes to 'fill' the membrane

1 Barrer=3.346×10⁻¹⁶ $\frac{\text{mol} \times \text{m}}{\text{s} \times \text{m}^2 \times \text{Pa}}$

Transient operation

- How ?
 - Time–lag technique
 - Single component
 - Constant diffusivity

- What information?
 - Permeability
 - Diffusivity -
- UDelft Solubility -

25/02/2021

Р = flux*δ/∆р

- Wide window
 - S = P/D

J.C. Jansen, Polymer (2007)

6FDA-DAM

CO₂, CH₄ & N₂ adsorption isotherms and enthalpies

Morphology variation NH₂-MIL-53(Al)

Morphology & loading variation NH₂-MIL-53(Al) polymer permeability

 $CO_2:CH_4 = 1:1; \Delta P = 3 \text{ bar}; T = 298 \text{ K}$

6FDA-DAM – high permeability

 little effect permeability and selectivity

- doubling permeability
- selectivity little effect

MEMBER

A. Sabetghadam et al. Adv. Funct. Mater. 2016, 26, 3154-3163

15%CO₂/85%N₂ 25 °C 2 bar ~25 μm

- Permeability increased with loading
- Selectivity hardly affected

Etxeberria et al. Journal of Membrane Science 2018, 550, 198-207

MOF-based mixed matrix membranes

- Polymer continuous phase
- MOF filler, below percolation

25/02/2021

MOF-based mixed matrix membranes What if?

- Polymer continuous phase
- MOF filler surrounded by gaps

What M⁴ configuration do we want? What properties of materials?

- Models don't capture performance
 - Volume fraction filler important parameter loading
 - Control transport pathways
- Highly dispersed MOF, nanoparticles
 - Large pore polymer penetration?
 - Large aspect ratio filler (3rd gen.)
 - Hollow spheres, core shell (3rd gen.)
 - Polymer chain orientation
- Molecular sieving (H₂)
- Adsorption-diffusion (CO₂)

- MOF, polymer
- high polymer permeability selective adsorption

Flux - Selectivity improvements

High flux polymers:

- Selective fillers
 - Increased path-lengths
 - tuned aspect ratio
 - Adsorption selective

Selective polymers:

- Flux improvements
 - Hollow spheres
 - Mesoporous, good adsorption
- Shorter effective path-lengths

Percolation membranes

Rodenas *et al.* Nature Materials 14, 48–55 (2015) Sabetghadam *et al.* J Membrane Science 570–571 (2019) 226–235

Take home message

- Experimentation
 - Check assumptions are these obeyed?
 - Module design important
 - Beware of sweep gas back permeation Ar as sweep better?
 - Estimate uncertainty in selectivity
 - Verify mass balances
- Important characteristics materials (MOF and polymer)
 - Adsorption isotherms, temperature dependency
 - Diffusivities different transport mechanisms, not constant
 - Swelling, aging, dual mode,...
- Modelling
 - Predictive models do not exist, simulations important

A posteriori model description

Tubular membrane testing

- Concentrations change along length (non-differential)
- Analogies with heat exchanger
 - co-, counter-, cross-current
 - Use logarithmically averaged pressure/concentration difference

Workshop Member 15 January 2020 Eindhoven

BILP-101x membrane performance

H₂/CO₂ mixture (1:1) separation 423 K, He sweep

TUDelft

What about (pure) MOF membranes?

- Available literature
 - Like zeolite membranes hard to make
 - Gas permeation data shows similarity with zeolites
 - Separation more fuzzy than zeolites
 - (local) Flexibility of structure
 - Less clear distinction between molecular size
 - Adsorption effects sometimes visible

Tubular membrane testing

Driving pressure gradient:

- Concentrations change along length
- Analogies with heat exchanger
 - co-, counter-, cross-current
 - Use logarithmically averaged pressure/concentration difference

2.3. High temperature catalysts and sorbents (Julien Meyer – IFE)

IFE

MEMBER workshop, TU/e, Eindhoven, 15.01.2020

High temperature sorbent development for pre-combustion CO₂ capture via Sorption-Enhanced Reforming

Julien Meyer

Department of Environmental Industrial Processes

Institute for Energy Technology (IFE)

- IFE R&D is organized in 3 different sectors
- R&D in a broad scope of energy technology

3 **IF:**

Dep. of Environmental Industrial Processes at IFE

- RD&D in the field of power and hydrogen production with integrated CO₂-capture, with a special focus on the development of:
 - sorption-enhanced processes
 - novel high temperature CO₂ solid sorbents
 - novel oxygen carriers for chemical looping processes
- The research group has expertise in:
 - process intensification
 - gas-solid catalytic and non-catalytic reactions
 - advanced material science
 - fluidized bed reactor technology
 - process modelling and simulation

Granulators

TGAs

Reactor rigs

Solid sorbents for CO₂ capture

Required sorbent properties

- High absorption capacity
- High reaction rate
- Low energy requirement for desorption
- Chemical stability (reversible CO₂ sorption/desorption)
- Mechanical stability
- Long term multi-cycle use
- Availability / abundance of raw materials
- Acceptable price

6 **|F**

Sorption mechanisms, cycling principle, process types

- Adsorption / chemisorption
- Absorption / chemical reaction
- Temperature and/or pressure swing processes
 - Low temperature difference between sorption and desorption is advantageous
 - Pressure swing at high temperature is challenging
- Batch or continuous processes
 - Batch processes usually operated with packed bed reactors
 - Synchronization, number/size of reactors, valve operation can be challenging
 - Continuous process usually operated with fluidized/moving bed reactors
 - Attrition and material consumption can be challenging

IFE Type of CO₂ solid sorbents for different temperature range

8 IFE

Type of solid sorbents and sorption principles

- Sodium/potassium carbonates
 - Based on a carbonate-bicarbonate cycle
 - 60-200°C range
 - Developed for post-combustion capture
 - Operated in circulating fluidized bed systems, developed by KIER and KEPCO (South-Korea)
- Hydrotalcites (double layered hydroxide, usually Mg- and Al-based)
 - Anion-exchange, adsorption mechanism
 - 350-500°C range
 - Developed for pre-combustion capture (Sorption-Enhanced Water Gas Shift)
 - Operated as PSA system in multiple packed bed reactors, developed by ECN/TNO (Netherlands)
- Calcium based sorbents
 - Based on oxide-carbonate cycle
 - 500-900°C
 - Developed for post and pre-combustion capture (Calcium Looping and Sorption-Enhanced Reforming)
 - Circulating fluidized bed systems developed by several groups in Europe

CaO-based solid sorbents for high temperature CO₂ capture via sorption-enhanced reforming

Sorption-Enhanced Reforming (SER)

Emerging reforming technology with integrated CO₂ capture

- Hydrogen production in one single step made possible by the addition of a CaO-based solid sorbent and a carbonation-calcination loop
- Combination of
 - Steam reforming
 - Water gas shift
 - In-situ Carbonation
- Regeneration of the CO₂ sorbent by decomposition of the CaCO₃ formed (calcination)

Sorption-Enhanced Reforming process

- 2 reactors instead of 6 in the conventional reforming process with CO₂ capture
- Heat supplied to the reformer by hot solids and carbonation reaction
- Suited for continuous operation in fluidized bed reactor system

Sorption-Enhanced Reforming SER

Advantages

 Higher H₂-yields (95 vol% +) than in conventional SMR, <u>in one single step</u>, and at lower temperature (600-650°C), due to "Le Chatelier's principle"

- In-situ CO₂ capture included in the process
- No need for pre-reformer and shift catalysts
- Simplified process layout and process intensification
- Performance
 - Potential for lower production costs and energy savings
 - Up to 30% reduction of energy intensity
 - Saving in capital and investment cost between 20-30%
 - Efficiency of 70% including
 - CO₂ capture rate of 90%
 - \bullet CO $_{\rm 2}$ compression to 120 bar and H $_{\rm 2}$ compression to 60 bar

Why CaO-based sorbents?

Carbonation temperature matches reforming/shift temperatures

- High absorption capacity
- High reaction rate

- carbonation is a fast reaction
- Availability / abundance of raw materials
- Acceptable price
- High temperature capture range
 - Potential for high efficiency
 - Material stability challenges

Natural calcium-based sorbents: calcite and dolomite

- Calcined limestone and dolomite show
 - Good availability
 - Low cost
 - High sorption capacity
 - Fast kinetics
- However, they suffer from
 - Rapid loss of sorption capacity during multi-cycling due to pore closure and sintering
 - Relatively poor mechanical stability
 - Can contain impurities like Sulphur that can contaminate catalysts
- Synthetic CaO-based sorbents can solve the challenges of natural CaObased sorbents by controlling the chemistry and the particle production process
 - increase sorption capacity
 - > obtain a stable sorption capacity with increasing number of cycles
 - > increase the mechanical stability for use in fluidized bed systems

Methodology for the development of the sorbent production method HTSORB material

• The sorbent material developed uses a mayenite support (Ca₁₂Al₁₄O₃₃)

- Mayenite has revealed to be a suited stable support for CaO-based sorbent materials and operations up to 925°C
- The sorbent material is based on a hydrothermal synthesis route
- Sorbent granules are produced by high shear granulation

Production of the sorbent micro-powder

• Hydrothermal synthesis

- Production of calcium hydroxide/calcium aluminium hydroxide powder (hydrogarnet Ca₃Al₂[(OH)₄]₃)
- Low cost, largely available hydroxide precursors
 From limestone and bauxite
- Simple and easily reproducible

Ca(OH)₂-hydrogarnet powder

Production of granulated sorbent (HTSORB)

- Thermal treatment
 - Removal of water and binder
 - Conversion of Ca(OH)₂-hydrogarnet to CaO-mayenite
 - Partial sintering to give mechanical strength

Production of granulated HTSORB

- High shear granulation method
 - Dense granules with good mechanical properties
 - Widely industrially used
 - Scalable up to typically 500 kg/batch

From lab to large scale

HTSORB texture analysis

- Micro-porosity formed during the decomposition of the Ca(OH)₂-hydrogarnet
- Good macro-porosity of the granules

Ca(OH)₂, Ca₃Al₂(OH)₁₂ after synthesis

CaO, Ca₁₂Al₁₄O₃₃ after granulation and thermal treatment HTSORB granule

HTSORB stability as function of CaO loading

 Optimum CaO loading of 30-32 wt% for high capacity stability and sintering limitation 20

Upscaling of CaO-based solid sorbents

Development objectives for sorbent in MEMBER

- Optimize sorbent formulation for the SER process
 - Optimize the production method in view to minimize the production costs
 - Achieve chemical and mechanical multi-cycling stability
 - Upscale the production method to 50 kg/day
 - Test the material in relevant process conditions at TRL6

HTSORB (32 wt% CaO) long-term sorption capacity

• Stable capacity of 0.20 g-CO₂/g HTSORB after 1000 cycles

HTSORB (32 wt% CaO) long-term sorption capacity

- Maximum operating capacity of 0.15 g-CO₂/g HTSORB for fast kinetics
- Stable reaction kinetics during multi-cycling

HTSORB characterization after long-term multi-cycling ²⁵ IFE

• Partial gradual sintering of CaO

MEMBER

Up-scaling of production method at 50 kg/day scale

Hydrothermal synthesis

Centrifugation

Granulation

Thermal treatment

26

IFE

Matériaux Nanostructurés & Poudres Céramiques

SER in lab-scale batch fluidized bed reactor

- HTSORB + novel fluidizable reforming catalyst (Ni-based)
- Satisfactory SER performance in FBR (about 98.5 vol% H₂) for 2 consecutive cycles

catalysts & chemical specialties

Mixed material stability during multi-cycling in TGA

- Gradual decrease of reaction rate with increasing number of cycles
- The novel catalyst performs better than the commercial one
- Indication of gradual activity loss of the reforming catalyst
 - High steam partial pressure at high temperature leading to sintering

Mechanical performance of the materials Air Jet Index measurements

	AJI 1 hour	AJI 5 hours
HTSORB (calcined)	7.6%	16.4%
C&CS #1005 catalyst (reduced)	7.5%	15.6%
Commercial catalyst (reduced)	2.5%	6.1%

- Measured at 850°C in N₂
- Reference material needed for test in similar conditions (FCC catalyst for example)
- Test of sorbent + catalyst mixture should be carried out

Demonstration at TRL6

30 **IFE**

SER reactor prototype at the IFE-HyNor H₂ technology Center

- H₂ production capacity
 - 13 Nm³/h
- Reformer
 - 600°C; 0.5 barg max.
 - Steam/CH₄ ratio: 4
 - Biomethane as fuel (97% CH₄)
- Regenerator
 - 850°C; 0.5 barg max.
 - Steam as sweep gas
- Solids
 - CO₂ sorbent: HTSORB (200-300 μm)
 - Novel reforming catalyst (100-200 μm)
 - Ratio sorbent/catalyst: 3 w/w
 - Solids inventory: ca. 80 kg
 - Solids circulation rate: 75 kg/h

IFE-HyNor Hydrogen Technology Center

SER prototype

IFE

31

IFE-HyNor Hydrogen Technology Center

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760944

IFE

Julien Meyer Senior Research Scientist

julien.meyer@ife.no

2.4. Pd based membranes development (Ekain Fernández – TECNALIA)

Palladium membranes for H₂ production / purification

Ekain Fernandez

ekain.fernandez@tecnalia.com

1st Workshop MEMBER project, 15th January 2020, Eindhoven (NL)

Introduction

Climate goals. CO₂ emission scenarios until 2100

EU's target: reduction of >80%of CO₂ emission by 2050 compared to 2000.

www.theconversation.com/global-carbon-report-emissions-will-hit-new-heights-in-2014-31834

=

Hydrogen economy

Hydrogen Roadmap Europe. FCH-JU. 2019; IRENA. Hydrogen from renewable power. 2018; Australian National Hydrogen Strategy 2019

(CONFIDENTIAL - Disclosure or reproduction without prior permission of Tecnalia is prohibited)

Membrane

111

=

Thin Pd (< 5 μ m) supported membranes for high H₂ permeation and selectivity

Comparison between other R&D and TECNALIA Pd membranes

(CONFIDENTIAL - Disclosure or reproduction without prior permission of Tecnalia is prohibited)

Thin (3-4 µm thick) Pd-Ag membranes (ceramic support)

=

11

=

Thin (5 µm thick) Pd-Ag membranes (metallic support)

E. Fernandez et al., Chem. Eng. J. 305 (2016) 182-190

(CONFIDENTIAL - Disclosure or reproduction without prior permission of Tecnalia is prohibited)

Ultra-thin (≤1 µm thick) Pd-Ag membranes (ceramic support)

1.3 µm thick Pd-Ag membrane (T=400 °C)

Tuning of H₂ permeance and selectivity with Pd-Ag layer thickness

J. Melendez et al., J. Membr. Sci 528 (2017) 12-23

H₂ production

=

Membrane reactor for H₂ production

=

Membrane reactor for H₂ production

(CONFIDENTIAL - Disclosure or reproduction without prior permission of Tecnalia is prohibited)

Pd-based membranes

A. Arratibel et al., J. Membr. Sci. 563 (2018) 419

Pd-based membranes

- Thicker wall ceramic tubes (14/7 mm o.d.) present higher sealing torque and higher stability.
- New Finger-like ceramic support (50 cm long) avoids the use of one Swagelok and the leak rate with the finger-like is reduced after 2000 h by more than 30%

N. Nooijer et al., Processes, 2019, 7(2), 106

(CONFIDENTIAL - Disclosure or reproduction without prior permission of Tecnalia is prohibited)

Pd-based membranes

Scale-up of Pd-based membrane manufacturing

125 membranes of ~40 cm long manufactured for the BIONICO membrane reactor prototype

H₂ distribution

111

=

Membranes for H₂ purification (Distribution)

Membranes for H₂ purification (Distribution)

=

Conclusions

- Pd-Ag (≤ 5 µm) supported membranes with high H₂ permeation and selectivity have been developed.
- Membranes show long-term stability (>1,000 h) at temperatures up to 500 °C.
- Membrane manufacturing process has been scaled up (more than 100 membranes and up to 50 cm long)
- Pd membrane reactors improve the conversion with respect to traditional reactor.
- High purity H₂ can be produced from different feedstocks (i.e. natural gas, ethanol, biogas) using membrane reactors.
- Pd-based membranes can be used for H_2 purification from H_2 -CH₄ admixtures

Future developments / Challenges

- Long-term stability test (next target: >8000 h)
- Recycling of membranes and supports
- Use membrane technology for other reactions / applications

THANK YOU FOR YOUR ATTENTION

Ekain Fernandez

ekain.fernandez@tecnalia.com

www.tecnalia.com

2.5. Membrane reactors – current status and perspectives (Fausto Gallucci – TUE)

Membrane and Membrane Reactor for Sustainable Process Development

Fausto Gallucci, Prof. Inorganic Membranes and Membrane Reactors

Chemical Engineering and Chemistry, Sustainable Process Engineering

Outlook

- Who we are
- Why Membrane reactors
- Large-scale
- Small-scale
- Where we are

Our Labs

Research themes - SIR

Novel intensified reactor concepts via:

- Integration <u>reaction</u> and <u>separation</u> (membrane reactors, chemical looping)
- Integration <u>reaction</u> and <u>heat/energy management</u> (endo/exothermic, plasma systems)

4

• Research approach: combination experimental PoC and modelling

Research themes - SIR

Integration reaction + separation

Packed bed and fluidized bed membrane reactors

- (H₂, syngas, oxidative dehydrogenations, partial oxidations)
- Optimal design for maximum yields
- Liquid supported membranes

MEMBRANE TECHNOLOGY

MEMBRANE TECHNOLOGY

One of our challenges

Sea Level Risks - North Sea

Solutions

1) Reduce the number of people;

2) Reduce the fossil energy use (by use of renewables and improved efficiency)

3) Capture the CO_2 (at the production point but also from the atmosphere)

Membrane functions

SEPARATION

A membrane reactor

Brunetti A.; Caravella C.; Barbieri G.; Drioli E.; "<u>Simulation study of</u> <u>water gas shift in a membrane reactor</u>", *J. Membr. Sci.*, 2007, 306(1-2), 329-340

Why a membrane reactor?

Examples

The Mysterious Island

oyed used heat

TU/e

als

13 Membrane Reactors- Fausto Gallucci

Hydrogen production

Interesting technologies to improve reforming with CO₂ capture

Integrate Membranes and CLC

VIDI - 12365

2012 – TRL1

2017 – TRL4/5

Integrate Membranes and CLC

Integrate Membranes and CLC

Pd-Ag metallic supported

18 Membrane Reactors- Fausto Gallucci

Is MA-CLR really interesting?

	Conventional NO CO ₂ capture	Conventional WITH CO ₂ capture	MA-CLR concept
Efficiency (%)	81	67	82
CO ₂ avoided (%)	-	74	91
Cost of H ₂ (€/m ³)	0.216	0.282	0.213

Challenges

Challenges = Research questions

23 Membrane Reactors- Fausto Gallucci

The next steps – extension to micro-CHP

The objective:

Advanced m-CHP systems

Advanced Multi-Fuel Reformer for Fuel CELL CHP Systems (ReforCELL - 278997)

A Flexible natural gas membrane Reformer for m-CHP applications (FERRET - 621181)

Advanced m-CHP fuel CELL system based on a novel bio-ethanol Fluidized bed membrane reformer (FluidCELL - 621196)

Conventional reforming for fuel processing

New concept with CMR for fuel processing

Conventional NG processing technology

PEMFC mCHP system layout

TU/e

29 Membrane Reactors- Fausto Gallucci

Membrane reformer for NG processing

System performance

Simulation of system with Membrane Reactors:

Exergy loss analysis on 2kW electric output system

Higher Exergy loss with conventional processing scheme:

$\geq \approx 2/3$ more water to evaporate

- Steam reinsertion to WGSR's
- ➤ Higher ΔT
 - Conventional reformer at 830°C.
 - Membrane reformer at 600°C

33 Membrane Reactors- Fausto Gallucci

Exergy loss analysis on 2kW electric output system

Higher Exergy loss with conventional processing scheme:

- 4 reacting stages instead of 1
- Complete CH₄ conversion at reforming stage
- ➤ Higher ΔT
 - Conventional reformer at 830°C.
 - Membrane reformer at 600°C

Energy balance on 2kW electric output system

STEPS TAKEN TILL NOW

STEPS TAKEN TILL NOW

2.6. Process design for CO2 capture (Vittoria Cosentino – KT & Leonardo Roses – HYGEAR))

Processes for CO₂ Carbon Capture

Ist Workshop MEMBER Project TU/e, 15-01-2020

> Emma Palo Lorena Mosca <u>Vittoria Cosentino</u> Robert Makkus <u>Leonardo Roses</u>

Contact: v.cosentino@kt-met.it, leonardo.roses@hygear.com

The present publication reflects only the author's views. The Commission is not responsible for any use that may be made of the information contained therein.

HYGEAR

1st Workshop MEMBER Project TU/e, 15-01-2020

- Introduction on CO₂ emissions
- \geq Processes for CO₂ Capture
 - State of the art
- MEMBER Objectives
 - Novel membrane based technologies
 - Techno-economic targets
- MEMBER solutions
 - Pre-combustion CO₂ Capture (Prototype A)
 - Post-combustion CO₂ Capture (Prototype B)
 - Hydrogen production with integrated CO₂ capture (Prototype C)
- Conclusions and Future Perspectives

(Disclosure or reproduction without prior permission of MEMBER is prohibited)

1st Workshop MEMBER Project TU/e, 15-01-2020

HYGEAR

Introduction on CO_2 emissions

- CO_2 emissions from fossil materials contribute for ~ 60% to global warming ^[2]
- \succ CO₂ is the undesired by-product of Hydrocarbon Conversion Processes and the product of Combustion in Power Production, Building Heating, Transportation, etc.

PROCESS	CO ₂ emissions 10 ⁶ metric ton / year ^[1]	% on the Total	
Power production	10,539	78.8 ~80%	
Cement production	932	7.0	
Refineries	798	6.0	
Iron and steel industry	646	4.8 ~ ~20%	
Petrochemical industry	379	2.8	
Oil and gas processing	50	0.4	
Other sources	33	0.2	

[1] IPCC reports 2018

[2] https://ec.europa.eu/clima/change/causes it

25/02/2021 Page 3 (Disclosure or reproduction without prior permission of MEMBER is prohibited).

1st Workshop MEMBER Project TU/e, 15-01-2020

Processes for CO_2 Capture State of the art (1/3)

- CO₂ capture aims to limit CO₂ release and consequent accumulation in the atmosphere through its removal upstream
- A few technologies can separate CO₂ from gaseous streams up to an efficiency defined as Carbon Capture Rate (CCR), with different performance advantages and disadvantages^[3]

[3] D.Y.C Leung & others, An overview of current status of carbon dioxide capture and storage tecnologies, Ren and Sust. En.Reviews Aug.2014

25/02/2021 Page 4

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

1st Workshop MEMBER Project TU/e, 15-01-2020

Processes for CO_2 Capture State of the art (2/3)

- > The absorption/regeneration process (both chemical and physical) is by far the most widespread technology for CO_2 separation from gaseous streams.
- It is applied in many industrial units such as ammonia production and gas processing and in some existing CCS applications (mainly aimed at EOR).
- \succ This technology has been considered as a benchmark for the MEMBER project ^[4].

Typical flowsheet of a basic chemical absorption process for CO_2 capture

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

[4] D2.2 Industrial Requirements MEMBER-WP02-D22-DLR-KT-19-07-2018-v13

> In combustion processes CO_2 can be captured via three different routes^[5]:

[5] F.Gallucci, E.Fernandez, P.Corengia, M. van Sint Annaland, Chem.Eng.Sc. 92 (2013)

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

MEMBER Objectives Novel membrane based technologies (1/3)

The main objective of the MEMBER project is the scale-up and manufacturing of advanced materials and technologies, aimed to reduce the cost of CO₂ capture.

> Each solution is going to be demonstrated through the operation and test of a prototype.

Scale-up issues are addressed during the project and a Business Plan is prepared for the industrial application of each technology.

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

MEMBER Objectives Novel membrane based technologies (2/3)

Case studies and strategies:

MEMBER Objectives

Novel membrane based technologies (3/3)

Prototype C

Pure hydrogen production with integrated CO_2 capture using MA-SER at the IFE-HyNor (Norway) under the supervision of ZEG POWER.

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

Reference and Target Performance and Cost for the MEMBER processes^[4]

	Reference Technology	Reference CCR [%]	Reference Cost of CO ₂ [€/ton]	MEMBER Targets for CCR [%]	MEMBER Targets for Cost of CO ₂ [€/ton]
Pre-comb. Power (IGCC)	Absorption by SELEXOL	90.9	33.0	90	< 30
Post-comb. Power (Coal)	MEA absorption	88.1	54.3	90	< 40
Hydrogen via SMR (NG) +CO ₂ pre- comb. capture	MDEA absorption	56	47.1	90	< 30
Hydrogen via SMR (NG) +CO ₂ post- comb.capture	MDEA absorption	90	69.8	90	< 30

[4] D2.2 Industrial Requirements MEMBER-WP02-D22-DLR-KT-19-07-2018-v13

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

- > Minimum CO_2 purity requirements per application^[4].
- > The target CO_2 purity of MEMBER technologies is 95%.

Application	Min. purity (%v/v)			
Enhanced oil recovery (EOR)	90 ^[6]			
Food	99.9 ^[7]			
Beverages	99.9 ^[8]			
Refrigerants	99.9 ^[9]			
Industrial	99.5 ^[10]			
Storage	95 ^[11]			

- [6] European Best Practice Guidelines EBTF-D4.9 CAESAR EU/FP7 (2011)
- [7] Carbon Dioxide liquid foograde E290, Linde Gas Benelux
- [8] ISBT carbon Dioxide Guidelines. Int. Soc. of Beverage Technologist (1999)
- [9] AHRI Standard Specifications for Refrigerants (206)
- [10] J.Pringle, Why the grade of CO2 is important, 2015
- [11] Eickhoff, Brown, Neele, Energy Procedia 114 (2017) 6698

Kinetics Technology 25/02/2021 Page 11

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

MEMBER solutions Prototype A (1/6)

Demo Site: CENER - Centro National de Energías Renowables - Spain

- \circ Semi-industrial pilot scale test facility able to develop 2^{nd} generation biofuel production processes based on raw materials and the application of biorefinery concepts.
- The gasification unit is a pilot plant with a nominal power of 2 MWth capable of generating a fuel gas suitable for the following cleaning and synthesis processes of 2nd generation biofuels.
- This unit is designed to work with a wide range of biomass and a wide range of bed materials and additives.
- The gasification unit is based on the technology of atmospheric bubbling fluidized bed (ABFB) working at temperatures between 650-1000 °C and with two operating modes: using air as gasifying agent or using steam/oxygen as gasifying agent.

MEMBER solutions <u>Prototype A (2/6)</u>

25/02/2021 Page 13

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

Final configuration is a compromise between site requirement and downstream unit specification

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

MEMBER solutions <u>Prototype A (4/6)</u>

Unit

Materials and Process targets	Target MMM	Value	U
 MMM Material production & Scale-up 	H ₂ /CO ₂ separation	100	GPU
tecnalia	H ₂ /CO ₂ selectivity	18	-
	Membrane area	10	m²
Johnson Matthey Inspiring science, enhancing life	Design temperature	200	°C
 Prototype Design 	Design pressure	10	bar
 SCS TU/e EIND HOVEN EIND HOVEN EIND HOVEN EIND HOVEN EIND HOVEN TU/e EIND HOVEN EIND HOVEN<!--</td--><td>Cost</td><td><150</td><td>€/m²</td>	Cost	<150	€/m²
	Target Process	Value	U
	CCR	90	%
 LCA & LCC Quantis EC@ Recycling 	CO ₂ purity	95	%

Unit

25/02/2021 Page 15

25/02/2021 Page 16 (Disclosure or reproduction without prior permission of MEMBER is prohibited).

MEMBER solutions <u>Prototype A (6/6)</u>

Simulation results

Permeance (GPU)	Selectivity (-)	Rec_tot	CO2 purity	H2 separation
100 (nominal target)	18 (nominal target)	>90 %	>95 %	73 %
50	18	>90 %	>95 %	44 %
25	18	>90 %	>95 %	23 %
100	14	<90 %	>95	73 %

- > A lower permeance lowers the hydrogen yield
- \succ A lower selectivity reduces the CO₂ recovery
- More complex layouts (multiple modules, recircualtion) will yield higher hydrogen yields

MEMBER solutions <u>Prototype B (1/4)</u>

Demo Site: AGROGER CHP plant - property of Galp Energia - Portugal galp

- Galp Energia is a vertically integrated multi-energy operator operating in the oil and natural gas business and as a producer and seller of electricity for industrial and home consumption.
- AGROGER cogeneration plant consists of 2 sets of Natural Gas fuelled electrical power-generators providing up to 8.8 MW of Power

25/02/2021 Page 18

MEMBER solutions Prototype B (2/4)

Materials and Process targets	Target MMM	Value	Unit
 MMM Material production & Scale-up 	CO ₂ /N ₂ separation	300	GPU
	CO ₂ /N ₂ selectivity	70	-
	Membrane area	10	m ²
JM Johnson Matthey Inspiring science, enhancing life	Design pressure	7	bar
Prototype Design	Cost	<100	€/m ²
	Target process	Value	Unit
T UDelft	CCR	90	%
 LCA & LCC Quantis 	CO ₂ purity	95	%
EC@ Recycling			

25/02/2021 Page 19

CO₂ is separated from the N₂-rich flue gases from a combustion process
 Size module 2 is much smaller than module 1

1st Workshop MEMBER Project TU/e, 15-01-2020

25/02/2021 Page 20

MEMBER solutions Prototype B (4/4)

Simulation results

Permeance (GPU)	Selectivity (-)	Rec_tot	CO2 purity
300 (nominal target)	70 (nominal target)	>90 %	>90 %
200	70	86 %	>90 %
100	70	67 %	>90 %
300	40	>90 %	90 %

- \succ CO₂ recovery is reduced when permeance decreases
- Purity not compromised
- Increase in operating pressure counteracts the reduced recovery
- > A reduction in selectivity results in a reducing purity

MEMBER solutions Prototype C (1/2)

Demo Site: IFE-HyNor Hydrogen Technology Centre - Norway

Combination of metallic membranes, catalyst and sorbents

- Non-profit international research foundation for energy and nuclear technology.
- o Advanced infrastructure fully dedicated to the test and demonstration of future clean hydrogen technologies.

Target process	Value	Unit
CCR	≥90	%
CO ₂ purity	≥95	%
H ₂ production	10	Nm³/h
H ₂ purity	≥99.9	%

Process scheme is under evaluation for Patent Application

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

MEMBER solutions Prototype C (2/2)

	Material	s and	targets	
--	----------	-------	---------	--

Materials production & Ο Scale-up

Institutt for energiteknikk

Target Membrane	Value	Unit
Life time	>4000	h
Design temperature	500	°C
Membrane area	L	m ²
Target Sorbent	Value	Unit
Sorption Capacity	Min 0.3	g _{CO2} / g _{sorb}
Cycling stability	Min. 1000	cycles
Attrition jet index	Max. 10	%
Target Catalyst	Value	Unit
Cycling stability	Min. 1000	cycles
Attrition jet index	Max. 10	%

LCA & LCC \bigcirc

Quantis

EC⁶ Recycling

(Disclosure or reproduction without prior permission of MEMBER is prohibited).

Conclusions and Future Perspectives

- The main purpose of the MEMBER project is the development of technologies that exceed the state of the art in pre/post-combustion for both power and hydrogen production.
- Advanced materials like MMMs for CO₂ separation, metallic Pd-membranes, catalyst and sorbents are being developed to this aim.
- The prototypes will be demonstrated in an industrially relevant environment, allowing validation of the performance and stability of the technological solutions and materials.
- A techno-economic assessment of the novel processes at an industrial scale is in progress to address the future commercialization of MEMBER technologies.

Processes for CO₂ Carbon Capture

Ist Workshop MEMBER Project TU/e, 15-01-2020

Thank you for your attention

https://member-co2.com/

Contact: joseluis.viviente@tecnalia.com

Acknowledgement: The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n°760944.

Acknowledgement: For the CO2 molecule used in the logo:The original uploader was Frederic Marbach at French Wikipedia [GFDL (<u>http://www.gnu.org/copyleft/fdl.html</u>)

1st Workshop MEMBER Project TU/e, 15-01-2020

HYGEAR

2.7. An overview on BIONICO project (Marco Binotti – POLIMI)

BIONICO

BIONICO BIOGAS MEMBRANE REFORMER FOR DECENTRALIZED H₂ PRODUCTION

TUE 15-01-2020 - Worshop on membrane processes for CO₂ capture - Marco Binotti

MOTIVATION

BIONICO

Nowdays about **95% of the H₂** produced worldwide comes from **fossil fuels**. To be sustainable H_2 should be produced by RES. Which are the best routes?

*Fuel Cells and Hydrogen Joint Undertaking. Study on Hydrogen from renewable resources in the EU, 2015

SUMMARY

BIONICO

Biogas membrane reformer for decentralized H₂ production

BIONICO will develop, build and demonstrate at a real biogas plant **(TRL6)** a catalytic membrane reactor integrating production and separation of **100 kg/day of H**₂. Direct conversion of biogas to pure hydrogen is achieved in a **single step**, with **increased overall efficiency** (>70%), strong decrease of volumes and auxiliary heat management units and reduction of operating temperature.

BIONICO CONCEPT

- Fuel conversion and H₂ separation take place in a single reactor thanks to a membrane permselectivity for H₂
- The chemical equilibrium is shifted towards products (as H₂ is removed with the membranes)
 enhancing CH₄ conversion at lower T

BG Oxidation: $CH_4 + 2O_2 \Rightarrow CO_2 + 2H_2O$ **BG Reforming:** $CH_4 + H_2O \Leftrightarrow CO + 3H_2$

WGS:

BIONICO

 Catalyst fluidization allows to: i) overcome problems with T control, ii) to operate with smaller particles maintaining very low Δp and iii) to limit concentration polarization issue

BIONICO CONCEPT

15/01/2020 Disclosure or reproduction without prior permission of BIONICO is prohibited

5

WHY BIONICO?

Two reference cases (based on SR and ATR) identified and simulated to benchmark BIONICO

Conventional System - Results						
units SR ATR						
Biogas feed	Nm³/h	39.5	63.5			
Total Biogas Input	kW	229	368			
System efficiency	% _{LHV}	51.7	27.8			
H2 delivery pressure	bar	20	20			
H2 production cost	€/kg	4.21	6.37			

The target of BIONICO is a system efficiency > $70\%_{LHV}$, about 25% higher than SR ($52\%_{LHV}$). Higher efficiency and equipment savings will end up in lower H₂ costs.

PROJECT OVERVIEW

Call year: 2014

Call topic: FCH-02.2-2014 Decentralized hydrogen production from clean CO2-containing biogas

Project dates: 01/09/2015 – 31/12/2019 (?)

Total project budget: 3,396,640 €

Partners:

- 8 partners from 7 countries
 - 2 university
 - 1 reserach center
 - 3 Industries
 - 2 SME

WORK STRUCTURE

BIONICO

PARTNERSHIP SYNERGIES

15/01/2020 Disclosure or reproduction without prior permission of BIONICO is prohibited

9

NOVEL CATALYST

GOAL

Development of highly active reforming catalysts to produce hydrogen from diverse biogas mixture coupled with steam and air in a fluidised bed regime.

PROJECT ACTIVITIES

BIODICO

 PGM doped alumina catalysts have been tested under biogas reforming conditions for dry, steam or autothermal reforming

NOVEL MEMBRANE & SUPPORT

GOAL

Development of Pd based tubular supported membranes, for application in biogas reforming catalytic membrane reactors

PROJECT ACTIVITIES

- Preparation of porous ceramic tubes of larger diameters (14/7mm) and materials for their use as supports for thin Pd-based membranes
- Manufacturing of thin film (<5 µm thick) Pd-Ag and Pd-Ag-Au membranes on the ceramic supports.
- Development of new finger-like porous asymmetric ceramic supports in which one of the ends of the tube is a closed porous part.

Finger-like asymmetric porous ceramic supports

NOVEL MEMBRANE & SUPPORT

GOAL

Development of Pd based tubular supported membranes, for application in biogas reforming catalytic membrane reactors

ACHIEVEMENTS

BIODICO

- o <u>1st</u> generation membrane & support
- Installation of a new plating system for preparation of >40 cm long membranes.
- **<u>2nd generation</u>** membrane & support.
 - Thin Pd-Ag layers have been deposited onto the 50 cm long finger-like supports
- Definition of criteria for support quality

2nd generation thin film Pd-alloy supported membranes (>40 cm long)

NOVEL MEMBRANE & SUPPORT

GOAL

Development of Pd based tubular supported membranes, for application in biogas reforming catalytic membrane reactors

ACHIEVEMENTS

- **Improvement of manufacturing** procedure for membrane prototype production
- <u>125 tubular membranes</u> produced for BIONICO prototype

Perm-selectivity >10,000 N₂ leakage level <10⁻¹⁰ mol m⁻² s⁻¹ Pa⁻¹

BIONICO

Novel Membrane & Support: Lesson learned

- Membrane production:
 - **Finger-like** end need to be **improved** to avoid using Swagelok end connector.
 - In order to ensure large-scale membrane production:
 - Suitable quality check procedure for supports should be implemented
 - An optimized & reproducible membrane preparation procedure required
 - The tracking and naming of supports & membranes is important during the membrane preparation phase.
- Membrane integration:
 - The alignment of the "membrane + Swagelok connector + dense tube" is crucial to avoid breakages during handling, integration and operation steps.
 - Sealing of ceramic supported thin Pd-based membrane need to be improved
 - Detailed protocol for the integration of the membranes in the prototype is necessary
- Membrane use:

BIONICO

- Membrane start-up, testing and shut-down protocol need to be clearly defined
- Avoid the contact of impurities that can damage membranes (i.e. H2S content in biogas)

GOAL

Definition of the lab scale reactors performances and identification of the best design for prototype pilot.

PROJECT ACTIVITIES

- Selection and characterization of the membrane for the prototype
 - Study of long-term membrane performance in a fluidized bed
 - The effect of H₂S on the performance of PdAg and PdAgAu membranes are studied
- Design and demonstration of biogas steam reformer at Lab-scale
- Development of phenomenological model of the fluidized-bed membrane reactor

GOAL

Definition of the lab scale reactors performances and identification of the best design for prototype pilot.

ACHIEVEMENTS

- Integration of catalyst and membrane
- One dimensional **phenomenological model** of the reactor
- Successful description of concentration polarization in the model/
- Effect of Au addition on H₂S resistance of the membrane

GOAL

Definition of the lab scale reactors performances and identification of the best design for prototype

ACHIEVEMENTS

BIONICO

 Successful testing of the Lab scale system with 5 membranes and catalyst

GOAL

Definition of the lab scale reactors performances and identification of the best design for prototype

ACHIEVEMENTS

 Successful testing of the Lab scale system with 5 membranes and catalyst

BIONICO

GOAL

Definition of the lab scale reactors performances and identification of the best design for prototype

ACHIEVEMENTS

• Effect of distance between membranes on the concentration polarization

15/01/2020 Disclosure or reproduction without prior permission of BIONICO is prohibited

100%

80%

60%

40%

20%

0%

0.9

0.8 ص 0.7

0.6

0.5

Hydrogen Recovery Factor, [-]

TU/e

19

U/Umf 2.4

U/Umf 3.9

GOAL

Final design and construction of MR prototype for the production of approximately 100 kg/day of pure hydrogen

PROJECT ACTIVITIES

BIONICO

 Design of the prototype catalytic membrane reactor at large scale including control system design

GOAL

Final design and construction of MR prototype for the production of approximately 100 kg/day of pure hydrogen

ACHIEVEMENTS

- A techno-economic optimization of BIONICO system was assessed
- Different operating conditions (T, p, S/C), biogas compositions and permeate side configuration were investigated
- Membrane reformer designed and manufactured by ICI

BIONICO PERFORMANCE

Parameter	units	BIONICO LF			BIONICO AD	
Temperature	°C	550	550	550	550	550
P feed	bar	12	10	20	12	12
P permeate	par	0.1	0.1	1.1/sw	0.1	0.2
BG Feed	Nm³/h	35.2	35.3	50.8	26.8	27.1
BG Input	kW	154.6	155.0	223.3	154.8	156.7
H ₂ production	kg/day	100	100	100	100	100
System efficiency	%	71.5	71.9	55.4	73.0	73.8
System efficiency (H ₂ @ 20 bar)	%	65.1	65.2	51.2	66.1	66.7
System efficiency (H ₂ @ 700 bar)	%	56.2	56.4	45.6	57.0	57.5

Sensitivity to design parameters

ΒΙΟΠΙCΟ

Evaluation of the LCOH

GOAL

Final design and construction of MR prototype for the production of

approximately 100 kg/day of pure hydrogen

ACHIEVEMENTS

 Design, construction and installation of the CMR and BOP

GOAL

Final design and construction of MR prototype for the production of approximately 100 kg/day of pure hydrogen

ACHIEVEMENTS

• Preliminary testing activity performed at ICI in December 2019

GOAL

Final design and construction of MR prototype for the production of approximately 100 kg/day of pure hydrogen

ACHIEVEMENTS

• Preliminary testing activity performed at ICI in December 2019

<u>Pressure</u> P retentate = 6 bar	<u>Products</u> : Retentate (volume	%)			
P permeate = 20 mbar	- CO	= 1.9 vol%			
Reactants	- CO ₂	= 12.6 vol%			
$\overline{CH_4}$ 5.81 Nm ³ /h	- CH ₄	= 2.3 vol%			
N_2 28.82 Nm ³ /h	- H ₂	= 7.3 vol%			
CO_2 1.45 Nm ³ /h	Permeate (volume %)				
Air 12.68 Nm ³ /h	- CO ₂	= 0.1 vol%			
H ₂ O 20 kg/h	- <i>CO</i>	= 0.01 vol% - 125 mg/m ³			
	- H ₂	= 99.3 vol%			

INTEGRATION&TESTING AT BIOGAS PRODUCTION SITE

GOAL

Final evaluation of the innovative process to directly produce pure hydrogen in a real biogas production site (ENC Landfill plant)

ACHIEVEMENTS

- Due to a failure occurred to the BIONICO system, no testing activity is foreseen in the identified real landfill plant.
 - \rightarrow The occurred failure is not related to the standard system operation
 - ightarrow ICI is investigating the reason of the failure
 - ightarrow discussion on how to further test the reactor in ICI is ongoing

GOAL

Development strategy towards sustainable solutions and provide guidance on how to operate the reactor prototype under safe conditions.

PROJECT ACTIVITIES

- Refined goal & scope of LCA analysis, in particularly, with further clarifications with regard to: (i) reference systems (baseline), i.e., SMR and ATR, (ii) level of details of inventory modeling and (iii) system boundaries
- Improved data collection for key data points, especially related to functional unit, biogas input, conversion efficiency, energy and water use as well as direct GHG emissions during conversion processes
- Final LCA analysis between BIONICO CMR and reference technologies
- In progress of developing applicable safety protocol

GOAL

Development strategy towards sustainable solutions and provide guidance on how to operate the reactor prototype under safe conditions.

PROJECT ACTIVITIES

• Understanding biogas utilization effects on LCA

GOAL

Development strategy towards sustainable solutions

ACHIEVEMENTS

Refined LCA modeling and results: BIONICO CMR only performs 0 significantly better for most environmental indicators than reference systems when biogas utilization is limited (Scenario 1, Left)

GOAL

Development strategy towards sustainable solutions

ACHIEVEMENTS

Refined LCA modeling and results: BIONICO CMR only performs 0 significantly better for most environmental indicators than reference systems when biogas utilization is limited (Scenario 1, Left)

DISSEMINATION ACTIVITY

- Project website (+3700 single users) updated till now : <u>www.bionicoproject.eu</u>
- 8 Newsletter prepared and distributed during the project to lifetime to about 100 recipients
- 9 papers published during the project lifetime
- 16 presentations and 8 posters presented at international conferences

DISSEMINATION ACTIVITY

- Project website (+3700 single users) updated till now : <u>www.bionicoproject.eu</u>
- 8 Newsletter prepared and distributed during the project to lifetime to about 100 recipients

+ timelapse

- 9 papers published during the project lifetime
- 16 presentations and 8 posters presented at international conferences
- 2 dissemination videos (+3400 views)
- Linkedin group on Membrane Reactor Technology in
- Project on ResearchGate R^G

DISSEMINATION ACTIVITY

• Press-release and magazine articles

BIONICO

- 1 international workshop on Membrane Reactor for Process Intensification (MR4PI) with 4 other projects (~90 participants)
- 1 workshop in ICI Caldaie for Italian stakeholders (~15 participants)

References

BIONICO

- Long-term stability of thin film Pd-based supported membranes, *Journal of Membrane Science, Open Access*
- Life Cycle Assessment and Economic Analysis of an Innovative Biogas Membrane Reformer for Hydrogen Production, *Processes, Open Access*
- Potentiality of a biogas membrane reformer for decentralized hydrogen production, *Chem. Eng. and Processing: Process Intensification, Open Access*
- On concentration polarisation in a fluidized bed membrane reactor for biogas steam reforming: Modelling and experimental validation, *Chemical Engineering Journal, Open Access*
- Palladium based membranes and membrane reactors for hydrogen production and purification: An overview of research activities at Tecnalia and TU/e, *Int. Journal of Hydrogen Energy*
- Green hydrogen production from raw biogas: a techno-economic investigation of conventional processes using pressure swing adsorption unit, *Processes, Open Access*
- Achievements of EU projects on membrane reactor for hydrogen production, *Journal of Cleaner Production, open access*
- Effect of Au addition on hydrogen permeation and the resistance to H2S on Pd-Ag alloy membranes, *Journal of Membrane Science*
- Techno-economic assessment in a fluidized bed membrane reactor for small-scale h2 production: Effect of membrane support thickness, *Membranes*,

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671459. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme Hydrogen Europe and Hydrogen Europe Research.

Thank you for your attention!

Site: <u>www.bionicoproject.eu</u> Email: <u>info@bionicoproject.eu</u> LinkedIn: <u>https://www.linkedin.com/groups/8513530</u> ResearchGate: <u>https://www.researchgate.net/project/BIONICO</u>

2.8. Environmental aspects of membrane-based CO2-capture (Mireille Faist – QUANTIS)

Environmental aspects of membrane-based CO₂-capture

Ist Workshop MEMBER Project TU/e, 15-01-2020

<u>Mireille Faist</u> Samuel Willi

Contact:mireille.faist@quantis-intl.com, samuel.willi@quantis-intl.com

15/01/2020 Page I

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

A global team of diverse and dynamic experts, backed by a strong **scientific background**

Our work

Building the bridge between the science of sustainability to its application in business

Our research projects

13 FP7 projects

17 H2020 projects (some yet about to start)

Quantis

> Why assess environmental impacts?

How do we assess them?

Conclusions

15/01/2020 Page 5

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

Why assess environmental impacts?

Quantis

15/01/2020 Page 6

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

MEMBER Why assess environmental impacts?

15/01/2020 Page 7

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

- inform and monitor key performance indicators along the project
- guide the development of the MEMBER materials and technology towards more sustainable solutions
- benchmark the MEMBER materials and technology against alternative conventional and state-of-the-art technologies for pre- and post-combustion CO2 capture
- help future suppliers and customers make more informed decisions.

15/01/2020 Page 8

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

- Life Cycle Assessment (LCA) according to ILCD Handbook as well as the ISO series of norms 14040-44 and the recent ISO norm 14046 on water footprinting
- Goal is to assess all environmental impacts of the novel technology «from cradle to grave»
- Using specific data from the partners and up-to-date database (ecoinvent)

15/01/2020 Page 9

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

A standardized method: Life Cycle Assessment according to ISO 14'040

LCA framework, as described by ISO 14040: 2006

Quantis

15/01/2020 Page 10

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

A quantitative approach: assess all environmental impacts of technology «from cradle to grave»

Quantis

15/01/2020 Page 11

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

I. Environmental assessment method

Using up-to-date database:

LCA can be used for:

- Identify environmental issues along the value chain (hotspots)
- Identify improvement possibilities and production optimization
- Compare alternatives
- Set goals and measure progress
- Benchmark performance
- Manage risk
- Communicate
- And more

Page 12

15/01/2020

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

Zero emissions?

Emissions elsewhere !

- From one life cycle stage to another
- From one region to another
- From one compartment to another
- From one generation to the next
- Among issues

Quantis

15/01/2020 Page 13

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

Added value for innovative projects

- It is easier and economically more viable to address the environmental performance at the early stages of commercial development than at the later stages.
- The results can be used to steer the project towards the realization of more environmentally friendly and affordable systems, while highlighting environmental hotspots along the value chain.
- The results will also provide knowledge and support to the different stakeholders and decision makers like the industries, European commission services, research institutions and government agencies.

15/01/2020 Page 14

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

Example of results (BIONICO project)

Based on the **Pareto** frontier analysis, we can identify the most favorable for either economic cost or carbon footprint. The optimal solution only exists along the Pareto curve (influenced by temperature, reactor design and pressure). The rest are inferior operating conditions or designs.

Quantis

15/01/2020 Page 15

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

- ZELCOR project: ZEro waste Ligno-Cellulosic biO-Refineries
- LCA results helped the researchers identify the problem related to solvent and energy consumption in the early stage design of their experiments.
- As the result of the LCA analysis, they're exploring different experiment design for biorefinery production

15/01/2020 Page 16

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

- Energy consumption of MEMBER system / efficiency loss of power plant
- Production of membranes and other key materials (sorbents, catalysts, MOFs, polymers, mixed matrix hollow fibers)
- Disposal of membranes and other key materials

 \bigcirc CO₂-emissions from energy consumption and from production of the MEMBER system can reduce the netto amount CO₂ stored.

Page 18

15/01/2020

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

- Evaluation of the overall CO₂-savings including storage phase → overall efficiency of CO₂-capture
- > Evaluation of other environmental impacts thanks to comprehensive indicator set \rightarrow identification of trade-offs
- Possible optimisation of the MEMBER system at an early stage according to the environmental assessment

15/01/2020 Page 19

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

Advanced MEMBranes and membrane assisted procEsses for pre- and post- combustion CO₂ captuRe

https://member-co2.com/

Thank you for your attention!

Contact: <u>mireille.faist@quantis-</u> <u>intl.com</u>

Acknowledgement: For the CO2 molecule used in the logo: The original uploader was Frederic Marbach at French Wikipedia [GFDL (<u>http://www.gnu.org/copyleft/fdl.html</u>)

((Disclosure or reproduction without prior permission of MEMBER is prohibited)..).

1st Workshop MEMBER Project TU/e, 15-01-2020

15/01/2020 Page 20